Skip to main content

Experimental characterization of localized deformation in geomaterials

  • Chapter
Advanced Mathematical and Computational Geomechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 13))

Summary

In geomaterials, among a large number of other solids, rupture is most frequently associated with localized deformation: shear bands, cracks and fissures. The transition from diffuse to localized deformation is known as “Strain Localization Phenomenon”. Theoretical studies, initiated in the years 1970’s by J. Rudnicki, J. Rice, I. Vardoulakis and others, have showed that the emergence of strain localization can be predicted on the basis of the constitutive law of the material, if the law incorporates enough of the complexity of real materials. This theoretical framework has motivated extensive experimental studies in Laboratoire 3S,CNRS –Université de Grenoble,France,on strain localization in granular soils and rocks.New methods for strain field measurement in a strained specimen have been developed, including false relief stereophotogrammetry (FRS) and Computed Tomography (CT). The present paper describes studies performed on different materials: sand, clay, soft rock, stiff marl, concrete. Experimental observations obtained on incipient and developed localization in“homogeneous” tests are presented. The discussion of the results addresses the issues of localization and peak strength, critical stress and strain, shear band orientation and thickness, and complex localization patterns. It is shown that previously assumed uniform deformation during triaxial compression of sand is actually quite complex patterns of strain localization. In the case of cohesive materials—clays, rocks, concrete—not only strain localization but also crack development are commonly observed. Special techniques developed to measure displacement discontinuities by means of FRS are presented and the results obtained for different cohesive geomaterials are discussed. Complementary information, including full–length thesis PDF copies, original data and videos can be downloaded from the web site of the team”Géomatériaux, Déformation et Rupture” in Laboratoire 3S, URL l3sphnum.hmg.inpg.fr/hpsl/etagere.htm

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R.F. Arthur and T. Dunstan. Rupture layers in granular media. In P.A. Vermeer and H.J. Luger, editors, IUTAM Conf. Def. Fail. Gran. Media,, pages 453–459. Balkema, 1982.

    Google Scholar 

  2. J.R.F Arthur, T. Dunstan, Q.A.J.L. Al-Ani, and A. Assadi. Plastic deformation and failure in granular media. Géotechnique, 27: 53–74, 1977.

    Article  Google Scholar 

  3. E.H. Benaija. Application de la Stéréophotogrammétrie au Béton: cas de la compression simple. Thèse de doctorat, Ecole Nationale des Ponts et Chaussées Paris, 1992.

    Google Scholar 

  4. P. Bésuelle. Compacting and dilating shear bands in porous rock: Theoretical and experimental conditions. J. Geophys. Res., 106(B7):13435– 13442, 2001.

    Google Scholar 

  5. R. Chambon, S. Crochepeyre, and J. Desrues. Localization criteria for non linear constitutive equations of geomaterials. Mechanics of Cohesive-Frictional Materials, 5: 561–582, 2000.

    Article  Google Scholar 

  6. R. Chambon and J. Desrues. Plastic instability, chapter Bifurcation par localisation et non linéarité incrémentale: un exemple heuristique d’analyse complète, pages 101–19. Presses ENPC Paris, 1985.

    Google Scholar 

  7. R. Chambon, J. Desrues, and D. Tillard. Shear modulus identification using experimental localisation data. In Vardoulakis I. Chambon R., Desrues J., editor, Localisation and bifurcation theory for soils and rocks, pages 101–112. Balkema, 1994.

    Google Scholar 

  8. R. Chambon, J. Desrues, and I. Vardoulakis. Localisation and Bifurcation Theory for Soils and Rocks. BALKEMA Rotterdam, 1994.

    Google Scholar 

  9. R. Charlier, R. Chambon, J. Desrues, and W. Hammad. Shear band bifurcation in soil modelling: a rate type constitutive law for explicit localisation analysis. In C.S. DESAI and E. KREMPL, editors, Third int. conf. on Constitutive laws for Engng materials, Tucson,, pages 399– 402. ASME Press, 1991.

    Google Scholar 

  10. J.L. Colliat-Dangus, J. Desrues, and E. Flavigny. Avantages et inconvénients de l’utilisation d’un système d’antifrettage dans l’essai triaxial de compression. Revue Française de Géotechnique, (34): 34–55, 1986.

    Google Scholar 

  11. J.L. Colliat-Dangus, J. Desrues, and P. Foray. Advanced Triaxial Testing for Soil and Rocks - ASTM STP 977, chapter Triaxial testing of granular soil under elevated cell pressure, pages 290–310. ASTM, 1988.

    Chapter  Google Scholar 

  12. C.A. Coulomb. Sur une application des règles de maximis et minimis à quelques problèmes de statique, relatifs à l’architecture. Académie Royale des Sciences, pages 1–40, 1773.

    Google Scholar 

  13. J. Desrues. La localisation de la déformation dans les matériaux granulaires. thèse de doctorat es sciences, USMG - INPG Grenoble, 1984.

    Google Scholar 

  14. J. Desrues. Geomaterials constitutive equations and modelling, chapter Shear Band Initiation in Granular Materials: Experimentation and Theory, pages 283–310. Elsevier, 1990.

    Google Scholar 

  15. J. Desrues. Bilan et Perspectives du Greco Géomatériaux - Paris 25–26 octobre 89, chapter Rupture localisée dans les géomatériaux: nouvelles approches, pages 151–178. Imprimerie de Grenoble, 1992.

    Google Scholar 

  16. J. Desrues. Analyse stéréophotogrammétrique de la fissuration progressive. In Taroni M. Eds. Berthaud Y., Paraskevas D., editor, Etudes du comportement des matériaux et des structures,Photomécanique,95,Cachan,14–16 mars,1995, pages 149–162. Eyrolles, 1995.

    Google Scholar 

  17. J. Desrues. Experimental strain localisation in plane strain tests on sands and weak rocks. In Dynamic Plasticity and Structural Behaviors,Plasticity’95, Osaka,July 1995, pages 415–418, 1995.

    Google Scholar 

  18. J. Desrues. Mécanique des Géomatériaux, volume 2, chapter Détection expérimentale de la localisation, pages 130–138. Hermes, 1995.

    Google Scholar 

  19. J. Desrues, P. Bésuelle, M. Kntz, and G. Viggiani. Etude de la cinématique de la fissuration et de la rupture d’échantillons de siltite. In Recueil des communications, Journées Scientifiques 1997, Bagnols-sur-Cèze, pages 69–70, 1997.

    Google Scholar 

  20. J. Desrues and R. Chambon. Large deformation of solids: physical basis and mathematical modelling, chapter Bifurcation par localisation de la déformation: étude expérimentale et théorique à l’essai biaxial sur sable, pages 433–459. Elsevier Applied Sc., 1986.

    Google Scholar 

  21. J. Desrues and R. Chambon. Shear band analysis for granular materials: the question of incremental non linearity. Ingenieur Archiv, 59: 187–196, 1989.

    Article  Google Scholar 

  22. J. Desrues, R. Chambon, W. Hammad, and R. Charlier. Soil modelling with regard to consistency: Cloe, a new rate type constitutive model. In DESAI C.S. and KREMPL E., editors, Third int. conf. on Constitutive laws for Engng materials, Tucson,, pages 395–398. ASME Press, 1991.

    Google Scholar 

  23. J. Desrues, R. Chambon, M. Mokni, and F. Mazerolle. Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique, 46 (3): 529–546, 1996.

    Article  Google Scholar 

  24. J. Desrues and B. Duthilleul. Mesure du champ de déformation d’un objet plan par la méthode stéréophotogrammétrique de faux relief. Journal de Mécanique Théorique et Appliquée, 3 (1): 79–103, 1984.

    Google Scholar 

  25. J. Desrues and W. Hammad. Shear banding dependency on mean stress level in sand. In Z.Sikora E.Dembicki, G.Gudehus, editor, Proceedings, 2nd Int. Workshop on Localisation and Bifurcation,Gdansk,1989, pages 57–68. Techn. Univ. Gdansk, 1989.

    Google Scholar 

  26. J. Desrues, J. Lanier, and P. Stutz. Localization of the deformation in tests on sand sample. Engineering fracture mechanics, 21: 909–921, 1985.

    Article  Google Scholar 

  27. J. Desrues, M. Mokni, and F. Mazerolle. Tomodensitométrie et localisation dans les sables. In Associazione Geotechnica Italiana, editor, Proceedings,ECSMFE X,Florence (It.),26–30 May 1991, pages 61–64. Balkema, 1991.

    Google Scholar 

  28. A. Drescher and I. Vardoulakis. Geometric softening in triaxial tests on granular material. Géotechnique, 32 (4): 291–303, 1982.

    Article  Google Scholar 

  29. R.J. Finno, W.W. Harris, M.A. Mooney, and G. Viggiani. Strain localization and undrained steady state of sands. Journal of Geotechnical Engineering, ASCE, 122 (6): 462–473, 1996.

    Article  Google Scholar 

  30. E. Flavigny, J. Desrues, and B. Palayer. Le sable d’hostun“rf”–note technique. Revue Française de Géotechnique, (53): 67–69, 1990.

    Google Scholar 

  31. W. Hammad. Modélisation non linéaire et étude expérimentale de la localisation dans les sables. Thèse de doctorat, UJF - INPG Grenoble, 1991.

    Google Scholar 

  32. C. Han and I. Vardoulakis. Plane-strain compression experiments on water-saturated fine-grained sand. Géotechnique, 41 (1): 49–78, 1991.

    Article  Google Scholar 

  33. P.Y. Hicher and H. Wahyudi. Microstructural analysis of strain localisation in clay. Computers and Geotechnics., 16: 205–222, 1994.

    Article  Google Scholar 

  34. K.A. Issen and J.W. Rudnicki. Conditions for compaction bands in porous rock. J. Geophys. Res., 105: 21529–21536, 2000.

    Article  Google Scholar 

  35. D. Kondo and J.P. Henry. Etude expérimentale de la localisation de la déformation. In GRECO Géomatériaux, editor, Rapport scientifique du GRECO Géomatériaux,, pages 201–204, 1990.

    Google Scholar 

  36. P.V. Lade and J. Tsay. Effects of localization in triaxial tests on clay. In Proc. XI ICSMFE San Francisco,, volume 1, pages 549–552, 1985.

    Google Scholar 

  37. J. Lanier. Constitutive Equations and Modelling, chapter Recent trends in laboratory testing. Elsevier, 1989.

    Google Scholar 

  38. B. Menéndez, W. Zhu, and T.-F. Wong. Micromechanics of brittle faulting and cataclastic flow in berea sandstone. J. Struct. Geol., 18 (1): 1–16, 1996.

    Article  Google Scholar 

  39. M. Mokni. Relations entre déformations en masse et d´eformations localisées dans les matériaux granulaires. Thèse de doctorat, UJF - INPG Grenoble, 1992.

    Google Scholar 

  40. M. Mokni and J. Desrues. Strain localisation measurements in undrained plane-strain biaxial tests on hostun rf sand. Mechanics of cohesive-frictional materials, 4: 419–441, 1999.

    Article  Google Scholar 

  41. W.A. Olsson. Theoretical and experimental investigation of compaction bands in porous rock. J. Geophys. Res., 104: 7219–7228, 1999.

    Article  Google Scholar 

  42. A. Ord, I. Vardoulakis, and R. Kajewski. Shear band formation in gosford sandstone. Int. J. Rock Mech. Min. Sci. Geomech Abstr., 28(5):397– 409, 1991.

    Google Scholar 

  43. M.S. Paterson. Experimental Rock Deformation - The Brittle Field. Springer-Verlag, 1978.

    Google Scholar 

  44. S. Raynaud. Fracturation et dissolution sous contrainte des roches, 1995. Thèse de doctorat.

    Google Scholar 

  45. J.R. Rice. Theoretical and Applied Mechanics, chapter The Localization of Plastic Deformation, pages 207–220. North-Holland Publishing Company, 1976.

    Google Scholar 

  46. V. Roger. Etude expérimentale et théorique de la localisation des déformations dans les matériaux granulaires en condition isochore. thèse de doctorat, UJF, 2000. 20 Jan 2000.

    Google Scholar 

  47. V. Roger, J. Desrues, and G. Viggiani. Experiments on strain localisation in dense sand under isochoric conditions. In Oka F., editor, Localisation and Bifurcation Theory for Soils and Rocks, pages 239–248. Balkema, 1998.

    Google Scholar 

  48. J.W. Rudnicki and J.R. Rice. Conditions for the localisation of deformation in pressure sensitive dilatant materials. JMPS, 23: 371–394, 1975.

    Google Scholar 

  49. G. Scarpelli and D.M. Wood. Experimental observations of shear band patterns in direct shear tests. In P.A. Vermeer and H.J. Luger, editors, Proc. IUTAM Conf. Def. Fail. Gran. Media,, pages 473–484. Balkema, 1982.

    Google Scholar 

  50. R.F. Scott. Failure. Géotechnique, 37: 423–466, 1987.

    Article  Google Scholar 

  51. F. Tatsuoka, T. Nakamura, C.C. Huang, and K. Tani. Strenght anisotropy and shear band direction in plane strain test of sand. Soils and Foundations, 30 (1): 35–54, 1990.

    Article  Google Scholar 

  52. F. Tatsuoka, M. Sakamoto, T. Kawamura, and S. Fukushima. Strenght and deformation characteristics of sand in plane strain compression at extremely low pressures. Soils and Foundations, 26 (1): 65–84, 1986.

    Article  Google Scholar 

  53. D. Tillard. Etude de la rupture dans les géomatériaux cohésifs. Application à la marne de beaucaire. Thèse de doctorat, Université Joseph Fourier - Grenoble I, 1992.

    Google Scholar 

  54. D. Tillard-Ngan, J. Desrues, S. Raynaud, and F. Mazerolle. Strain localisation in beaucaire marl. In Anagnostopoulos A. et al., editor, Geotechnical engineering of hard soils - soft rocks,, pages 1679–1686. Balkema, 1993.

    Google Scholar 

  55. J.M. Torrenti. Comportement mécanique du béton bilan de six années de recherches. Technical report, Etudes et recherches des laboratoires des ponts et chaussées, 1996.

    Google Scholar 

  56. J.M. Torrenti, J. Desrues, EH. Benaija, and C. Boulay. Stereophotogrammetry and localization in concrete under compression. Journal of Engineering Mechanics, 117 (7): 1455–1465, 1991.

    Article  Google Scholar 

  57. J.M. Torrenti, J. Desrues, E.H. Benaija, and C. Boulay. Application of stereophotogrammetry on concrete compression test. In Silva Gomes J.F. et al. (eds), editor, Recent Advances in Experimental Mechanics,Experimental Mechanics,Lisbonne,July,1994, pages 63–68. Balkema, 1994.

    Google Scholar 

  58. J. Tullis and R.A. Yund. Experimental deformation of dry westerly granite. J. Geophys. Res., 82 (36): 5705–5718, 1977.

    Article  Google Scholar 

  59. I. Vardoulakis. Bifurcation analysis of the triaxial test on sand samples. Acta Mechanica, 32: 35–54, 1979.

    Article  MATH  Google Scholar 

  60. I. Vardoulakis. Deformation of water-saturated sand: I. uniform undrained deformation and shear banding. Géotechnique, 46 (3): 441–456, 1996.

    Article  Google Scholar 

  61. I. Vardoulakis. Deformation of water-saturated sand: Ii. effect of pore water flow and shear banding. Géotechnique, 46 (3): 457–472, 1996.

    Article  Google Scholar 

  62. I. Vardoulakis, M. Goldscheider, and Q.G. Gudehus. Formation of shear bands in sand bodies as a bifurcation problem. Int. J. Num. Anal. Meth. Geom., 2: 99–128, 1978.

    Article  Google Scholar 

  63. I. Vardoulakis and B. Graf. Calibration of constitutive models for granular materials using data from biaxial experiments. Géotechnique, 35 (3): 299–317, 1985.

    Article  Google Scholar 

  64. I. Vardoulakis and J. Sulem. Bifurcation analysis in Geomechanics. Blackie, 1995.

    Google Scholar 

  65. W.R. Wawersik and C. Fairhurst. A study of brittle rock fracture in laboratory compression experiments. Int. J. Rock Mech. Min. Sci., 7:561– 575, 1970.

    Article  Google Scholar 

  66. T-F Wong. Micromechanics of faulting in westerly granite. Int. J. Mech. Min. Sci. Geomech. Abstr., 19: 49–64, 1982.

    Google Scholar 

  67. T.F. Wong, C. David, and W. Zhu. The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation. J. Geophys. Res., 102: 3009–3025, 1997.

    Article  Google Scholar 

  68. T. Yoshida, F. Tatsuoka, M.S.A. Siddique, and Y. Kamegal. Shear banding in sand observed in plane strain compression. In Vardoulakis I. Chambon R., Desrues J., editor, Localisation and bifurcation theory for soils and rocks,, pages 165–179. Balkema, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Desrues, J. (2003). Experimental characterization of localized deformation in geomaterials. In: Kolymbas, D. (eds) Advanced Mathematical and Computational Geomechanics. Lecture Notes in Applied and Computational Mechanics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45079-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45079-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07357-1

  • Online ISBN: 978-3-540-45079-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics