Advertisement

Efficient Object-Relational Interval Management and Beyond

  • Lars Arge
  • Andrew Chatham
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2750)

Abstract

Recently, the object-relational access method paradigm—the idea of designing index structures that can be built on top of the SQL layer of any relational database server—was proposed as a way to design easy to implement indexes while obtaining strong robustness, performance, and integration into transaction management for free. In this paper, we describe an object-relational index for the 3-sided range indexing problem. Previously an object-relational index was only known for the interval management problem, which is a special case of the 3-sided range indexing problem. Our new index is efficient in the worst-case, and it can be used to answer all general interval relationship queries efficiently. The previously known index were only able to answer 7 out of 13 possible relationship queries efficiently. We also describe a (limited) experimental study of a simplified version of our structure.

Keywords

Base Tree Range Query Interval Tree Query Point Block Cache 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, A., Vitter, J.S.: The Input/Output complexity of sorting and related problems. Communications of the ACM 31(9), 1116–1127 (1988)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Allen, J.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)zbMATHCrossRefGoogle Scholar
  3. 3.
    Arge, L.: External memory data structures. In: Abello, J., Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Massive Data Sets, pp. 313–358. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  4. 4.
    Arge, L., Samoladas, V., Vitter, J.S.: On two-dimensional indexability and optimal range search indexing. In: Proc. ACM Symposium on Principles of Database Systems, pp. 346–357 (1999)Google Scholar
  5. 5.
    Arge, L., Vitter, J.S.: Optimal dynamic interval management in external memory. In: Proc. IEEE Symposium on Foundations of Computer Science, pp. 560–569 (1996)Google Scholar
  6. 6.
    Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes. Acta Informatica 1, 173–189 (1972)CrossRefGoogle Scholar
  7. 7.
    Comer, D.: The ubiquitous B-tree. ACM Computing Surveys 11(2), 121–137 (1979)zbMATHCrossRefGoogle Scholar
  8. 8.
    Edelsbrunner, H.: A new approach to rectangle intersections, part I. Int. J. Computer Mathematics 13, 209–219 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gaede, V., Günther, O.: Multidimensional access methods. ACM Computing Surveys 30(2), 170–231 (1998)CrossRefGoogle Scholar
  10. 10.
    Kanellakis, P.C., Ramaswamy, S., Vengroff, D.E., Vitter, J.S.: Indexing for data models with constraints and classes. Journal of Computer and System Sciences 52(3), 589–612 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kanth, K.V.R., Singh, A.K.: Optimal dynamic range searching in non replicating index structures. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 257–276. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Knuth, D.E.: Sorting and Searching. In: The Art of Computer Programming, 2nd edn., vol. 3. Addison-Wesley, Reading (1998)Google Scholar
  13. 13.
    Kriegel, H.-P., Pötke, M., Seidl, T.: Managing intervals efficiently in object relational databases. In: Proc. International Conference on Very Large Databases, pp. 407–418 (2000)Google Scholar
  14. 14.
    Kriegel, H.-P., Pötke, M., Seidl, T.: Interval sequences: An object-relational approach to manage spatial data. In: Proc. International Symposium on Spatial and Temporal Databases, pp. 481–501 (2001)Google Scholar
  15. 15.
    Kriegel, H.-P., Pötke, M., Seidl, T.: Object-relational indexing for general interval relationships. In: Proc. International Symposium on Spatial and Temporal Databases, pp. 522–542 (2001)Google Scholar
  16. 16.
    McCreight, E.: Priority search trees. SIAM Journal on Computing 14(2), 257–276 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Nievergelt, J., Reingold, E.M.: Binary search tree of bounded balance. SIAM Journal on Computing 2(1), 33–43 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Overmars, M.H.: The Design of Dynamic Data Structures. LNCS, vol. 156. Springer, Heidelberg (1983)zbMATHGoogle Scholar
  19. 19.
    TIGER/LineTM Files, 1997 Technical Documentation. Washington, DC (September 1998), http://www.census.gov/geo/tiger/TIGER97D.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Lars Arge
    • 1
  • Andrew Chatham
    • 1
  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA

Personalised recommendations