Spatial Similarity Queries with Logical Operators

  • Konstantinos A. Nedas
  • Max J. Egenhofer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2750)


Traditional spatial querying assumes that a user specifies exactly the constraints of valid results, and that the result set contains only those items that fulfill exactly the query constraints. The nature of spatial data, however, makes it difficult for a user to always guess correctly the values stored, while exhaustive enumerations of acceptable alternatives to the ideal target would become a tedious process. Likewise, values that deviate somewhat from the query constraints should be part of a ranked result set as well. This paper develops methods for the retrieval of similar spatial information, in particular when several similarity constraints with logical combinations must be compared and integrated. The first set of methods is concerned with spatial similarity reasoning over null values by denoting the semantics of different types of null values with explicit identifiers that imply different degrees of uncertainty. The second set of methods contributes to a consistent and comprehensive methodology for spatial similarity retrieval in response to complex queries with combinations of logical operators. We provide an exhaustive list of spatial query scenarios with conjunctions, disjunctions, and negation and present justified solutions for each case. Since these computational methods are founded on fundamental psychological knowledge about similarity reasoning, they are particularly well suited for generating similarity results that match with users’ intuitions.


Similarity Measure Semantic Similarity Logical Operator Exact Match Conjunctive Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishr, Y.: Overcoming the Semantic and Other Barriers to GIS Interoperability. International Journal of Geographical Information Science 12(4), 299–314 (1998)CrossRefGoogle Scholar
  2. 2.
    Rodriguez, A., Egenhofer, M., Rugg, R.: Assessing Semantic Similarities Among Geospatial Feature Class Definitions. In: Vckovski, A., Brassel, K., Schek, H. (eds.) The 2nd International Conference on Interoperating Geographic Information Systems, Zurich, Switzerland, vol. 1580, pp. 189–202 (1999)Google Scholar
  3. 3.
    Mill, J.: Analysis of the Phenomenon of the Human Mind, vol. 2. Baldwin and Cradock, London (1829)Google Scholar
  4. 4.
    Richardson, M.: Multidimensional Psychophysics. Psychological Bulletin 35, 659–660 (1938)Google Scholar
  5. 5.
    Torgerson, W.: Multidimensional Scaling: I. Theory and Method. Psychometrika 17(4), 401–419 (1952)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Shepard, R.: The Analysis of Proximities: Multidimensional Scaling with an Unknown Distance Function. I. Psychometrika 27(2), 125–140 (1962)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Shepard, R.: The Analysis of Proximities: Multidimensional Scaling with an Unknown Distance Function. II. Psychometrika 27(3), 219–246 (1962)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Nosofsky, R.: Stimulus Bias, Asymmetric Similarity, and Classification. Cognitive Psychology 23, 94–140 (1991)CrossRefGoogle Scholar
  9. 9.
    Nosofsky, R.: Attention, Similarity, and the Identification-Categorization Relationship. Journal of Experimental Psychology: General 115, 39–57 (1986)CrossRefGoogle Scholar
  10. 10.
    Shepard, R.: Toward a Universal Law of Generalization for Psychological Science. Journal of Science 237, 1317–1323 (1987)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Imai, S.: Pattern Similarity and Cognitive Transformations. Acta Psychologica 41, 433–447 (1977)CrossRefGoogle Scholar
  12. 12.
    Hahn, U., Chater, N.: Concepts and Similarity. In: Lamberts, L., Shanks, D. (eds.) Knowledge, Concepts, and Categories, Psychology Press/MIT Press, Hove (1997)Google Scholar
  13. 13.
    Tversky, A.: Features of Similarity. Psychological Review 84(4), 327–352 (1977)CrossRefGoogle Scholar
  14. 14.
    Quillian, M.: Semantic Memory. In: Minsky, M. (ed.) Semantic Information Processing. MIT Press, Cambridge (1968)Google Scholar
  15. 15.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and Application of a Metric on Semantic Nets. IEEE Transactions on Systems, Man, and Cybernetics 19(1), 17–30 (1989)CrossRefGoogle Scholar
  16. 16.
    Budanitsky, A.: Lexical Semantic Relatedness and its Application in Natural Language Processing. Computer Systems Research Group, University of Toronto, Toronto, Technical Report CSRG-390 (1999)Google Scholar
  17. 17.
    Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems. Addison Wesley Longman Inc., Amsterdam (2000)Google Scholar
  18. 18.
    Richter, M.: Classification and Learning of Similarity Measures. In: Studies in Classification, Data Analysis and Knowledge Organization. Springer, Heidelberg (1992)Google Scholar
  19. 19.
    Bachman, C., Cohn, L., Florance, W., Kirshenbaum, F., Kuneke, H., Mairet, C., Scott, E., Sibley, E., Smith, D., Steel, T., Turner, J., Yormark, B.: Interim Report: ANSI/X3/SPARC Study Group on Data Base Management Systems. ACM SIGMOD Record 7(2), 1–140 (1975)Google Scholar
  20. 20.
    Codd, E.: Extending the Database Relational Model to Capture More Meaning. ACM Transactions on Database Systems 4(4), 397–434 (1979)CrossRefGoogle Scholar
  21. 21.
    Codd, E.: Missing Information (Applicable and Inapplicable) in Relational Databases. ACM SIGMOD Record 15(4), 53–78 (1986)CrossRefGoogle Scholar
  22. 22.
    Zaniolo, C.: Database Relations with Null Values. In: Proceedings of the ACM Symposium on Principles of Database Systems, Los Angeles, CA, pp. 27–33 (1982)Google Scholar
  23. 23.
    Vassiliou, Y.: Null Values in Data Base Management: A Denotational Semantics Approach. In: Bernstein, P. (ed.) Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data, Boston, MA, pp. 162–169 (1979)Google Scholar
  24. 24.
    Morrissey, J.: Imprecise Information and Uncertainty in Information Systems. ACM Transactions on Information Systems 8(2), 159–180 (1990)CrossRefGoogle Scholar
  25. 25.
    Santini, S., Ramesh, J.: Similarity Queries in Image Databases. In: Proceedings of CVPR 1996, International IEEE Computer Vision and Pattern Recognition Conference (1996)Google Scholar
  26. 26.
    Ortega, M., Rui, Y., Chakrabarti, K., Porkaew, K., Mehrotra, S., Huang, T.: Supporting Ranked Boolean Similarity Queries in MARS. IEEE Transactions on Knowledge and Data Engineering 10(6), 905–925 (1998)CrossRefGoogle Scholar
  27. 27.
    Torgerson, W.: Multidimensional Scaling of Similarity. Psychometrika 30(4), 379–393 (1965)CrossRefGoogle Scholar
  28. 28.
    Goldstone, R.: The Role of Similarity in Categorization: Providing a Groundwork. Cognition 52, 125–157 (1994)CrossRefGoogle Scholar
  29. 29.
    Stevens, S.: On the Theory of Scales of Measurement. Journal of Science 103(2684), 677–680 (1946)CrossRefGoogle Scholar
  30. 30.
    Chrisman, N.: Beyond Stevens: A Revised Approach to Measurement for Geographic Information. In: Twelfth International Symposium on Computer-Assisted Cartography, Auto-Carto 12, Charlotte, NC (1995)Google Scholar
  31. 31.
    Lipski, W.: On Semantic Issues Connected with Incomplete Information Databases. ACM Transactions on Database Systems, 262–296 (1979)Google Scholar
  32. 32.
    Attneave, F.: Dimensions of Similarity. American Journal of Psychology 63, 516–556 (1950)CrossRefGoogle Scholar
  33. 33.
    Nosofsky, R.: Similarity Scaling and Cognitive Process Models. Annual Review of Psychology 43 (1992)Google Scholar
  34. 34.
    Santini, S., Ramesh, J.: The Graphical Specification of Similarity Queries. Journal of Visual Languages and Computing 7(4), 403–421 (1997)CrossRefGoogle Scholar
  35. 35.
    Fagin, R.: Fuzzy Queries in Multimedia Database Systems. In: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Seattle, WA (1998)Google Scholar
  36. 36.
    Ramakrishna, M., Nepal, S., Srivastava, D.: A Heuristic for Combining Fuzzy Results in Multimedia Databases. In: Proceedings of the thirteenth Australasian conference on Database technologies, Melbourne, Victoria, Australia (2002)Google Scholar
  37. 37.
    Santini, S., Ramesh, J.: Integrated Browsing and Querying for Image Databases. IEEE Multimedia 7(3), 26–39 (2000)CrossRefGoogle Scholar
  38. 38.
    Fagin, R.: Combining Fuzzy Information From Multiple Systems. In: 15th ACM Symposium on Principles of Database Systems (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Konstantinos A. Nedas
    • 1
  • Max J. Egenhofer
    • 1
  1. 1.National Center for Geographic Information and Analysis, Department of Spatial Information Science and EngineeringUniversity of MaineOronoUSA

Personalised recommendations