Advertisement

A Multi-representation Spatial Data Model

  • Sheng Zhou
  • Christopher B. Jones
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2750)

Abstract

Geo-referenced information is characterised by the fact that it may be represented on maps at different levels of detail or generalisation. Ideally a spatial database will provide access to spatial data across a continuous range of resolution and multiple levels of generalisation. Existing work on multi-resolution databases has treated generalisation control as one-dimensional. Here we extend the concept of multi-resolution spatial databases to provide support for multiple representations with variable resolution. Therefore the controls on generalisation become multi-dimensional with spatial resolution as one dimension and various types of generalisation style metrics as the other dimensions. We present a multi-representation spatial data model based on this approach and illustrate the implementation of multi-representation geometry in association with an online web demonstration.

Keywords

Spatial Database Query Time Multiple Representation Resolution Range Object Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Puppo, E., Dettori, G.: Towards a formal model for multiresolution spatial maps. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 152–169. Springer, Heidelberg (1995)Google Scholar
  2. 2.
    Rigaux, P., Scholl, M.: Multi-scale partitions: Application to spatial and statistical database. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 170–183. Springer, Heidelberg (1995)Google Scholar
  3. 3.
    Stell, J.G., Worboys, M.F.: Stratified map spaces. In: Proc. The 8th International Symposium on Spatial Data Handling, pp. 180–189. Taylor and Francis, British Columbia (1998)Google Scholar
  4. 4.
    Stell, A.J., Worboys, M.F.: Generalizing graphs using amalgamation and selection. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 19–32. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Becker, B., Six, H.-W., Widmayer, P.: Spatial priority search: an access technique for scaleless maps. In: Proc. ACM SIGMOD, Denver, Colorado, pp. 128–137 (1991)Google Scholar
  6. 6.
    Zhou, S., Jones, C.B.: Design and implementation of multi-scale databases. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 365–384. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Rigaux, P., Scholl, M.: Multiple Representation Modelling and Querying. In: Nievergelt, J., Widmayer, P., Roos, T., Schek, H.-J. (eds.) IGIS 1994. LNCS, vol. 884, pp. 59–69. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Bedard, Y., Bernier, E.: Supporting multiple representations with spatial databases views management and the concept of < <VUEL> >. In: Proc. ISPRS / ICA Workshop Multi-Scale Representations of Spatial Data, Ottawa (2002)Google Scholar
  9. 9.
    Friis-Christensen, A., et al.: Management of Multiply Represented Geographic Entities. In: Proc. International Database Engineering and Applications Symposium (IDEAS 2002), pp. 150–159 (2002)Google Scholar
  10. 10.
    The MurMur Consortium. Supporting Multiple Representations in Spatio-Temporal databases. In: Proc. 6th EC-GI & GIS Workshop, Lyon, France (2000)Google Scholar
  11. 11.
    The MurMur Consortium, MurMur Project Workpackage 3 (Services) Deliverable 9: Other Services (2001)Google Scholar
  12. 12.
    Spaccapietra, S., Parent, C., Vangenot, C.: GIS databases: From multiscale to multiRepresentation. In: Choueiry, B.Y., Walsh, T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864, p. 57. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitised line or its carcature. The Canadian Cartographer 10(2), 112–122 (1973)Google Scholar
  14. 14.
    van der Poorten, P.M., Jones, C.B.: Characterisation and generalisation of cartographic lines using Delaunay triangulation. International Journal of Geographical Information Science 16(8), 773–794 (2002)CrossRefGoogle Scholar
  15. 15.
    Visvalingam, M., Whyatt, J.D.: Line generalisation by repeated elimination of points. Cartographic Journal 30(1), 46–51 (1993)Google Scholar
  16. 16.
    Robinson, A.H., et al.: Elements of Cartography, 6th edn. Wiley, Chichester (1995)Google Scholar
  17. 17.
    Li, M., Zhou, S., Jones, C.B.: Multi-Agent Systems for Web-Based Map Information Retrieval. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 161–180. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Sheng Zhou
    • 1
  • Christopher B. Jones
    • 1
  1. 1.Department of Computer ScienceCardiff UniversityCardiffUnited Kingdom

Personalised recommendations