Advertisement

Query Pre-processing of Topological Constraints: Comparing a Composition-Based with Neighborhood-Based Approach

  • M. Andrea Rodríguez
  • Max J. Egenhofer
  • Andreas D. Blaser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2750)

Abstract

This paper derives and compares two strategies for minimizing topological constraints in a query expressed by a visual example: (1) elimination of topological relations that are implied uniquely by composition and (2) restriction to topological relations that relate near-neighbor objects, as determined by a Delaunay triangulation. In both cases, the query processing approach is to solve a constraint satisfaction problem over a graph of binary topological relations. Individuals and the combination of the composition- and neighborhood-based strategies were implemented and compared with respect to their ability to reduce topological constraints, and with respect to the quality of the results obtained by a similarity-based searching that uses these pre-processing strategies. The main conclusion of this work is that similarity queries that are formulated in a visual language should exploit the metric characteristics of the configuration, even if only topological constraints are considered for making matches.

Keywords

Query Processing Delaunay Triangulation Constraint Satisfaction Problem Spatial Object Topological Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Egenhofer, M.: Query Processing in Spatial-Query-By-Sketch. Journal of Visual Languages and Computing 8(4), 403–424 (1997)CrossRefGoogle Scholar
  2. 2.
    Papadias, D., Mantzouroguannis, M., Kalnis, P., Mamoulis, N., Ahmad, I.: Content-Based Retrieval using Heuristic Search. In: ACM-SIGIR Conference on Research and Development in Information Retrieval, Berkeley, CA, pp. 168–175 (1999)Google Scholar
  3. 3.
    Papadias, D., Mamoulis, N., Delis, V.: Algorithms for Querying Spatial Structure. In: Gupta, A., Shmueli, O., Widom, J. (eds.) 24th VLDB Conference, New York, NY, pp. 546–557 (1998)Google Scholar
  4. 4.
    Rodríguez, A., Godoy, F.: A Content-Based Approach to Searching Spatial Configurations. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 260–275. Springer, Heidelberg (2002)Google Scholar
  5. 5.
    Rigaux, P., Scholl, M., Voisard, A.: Spatial Databases: with Application in GIS. Academic Press, San Diego (2002)Google Scholar
  6. 6.
    Egenhofer, M., Frank, A.: LOBSTER: Combining AI and Database Techniques. Photogrammetric Engineering & Remote Sensing 56(6), 919–926 (1990)Google Scholar
  7. 7.
    Park, H.-H., Lee, C.-G., Lee, Y.-J., Chung, C.-W.: Early Separation Filter and Refinement Steps in Spatial Query Optimization. In: International Conference in Database Systems for Advanced Applications, pp. 161–169 (1999)Google Scholar
  8. 8.
    Clementini, E., Sharma, J., Egenhofer, M.: Modeling Topological Relations: Strategies for Query Processing. Computers and Graphics 18(6) (1994)Google Scholar
  9. 9.
    Aref, A., Samet, H.: Optimizing Strategies for Spatial Query Processing. In: 7th International Conference on Very Large Databases, Barcelona, Spain, pp. 81–90 (1991)Google Scholar
  10. 10.
    Samet, H., Aref, W.: Spatial Data Models and Query Processing. In: Modern Database Systems, pp. 338–360. ACM Press, New York (1995)Google Scholar
  11. 11.
    Kriegel, H., Brinkhoff, T., Schneider, R.: Efficient Spatial Query Processing. IEEE Data Engineering Bulletin 16(3), 10–15 (1993)Google Scholar
  12. 12.
    Egenhofer, M.: Deriving the Composition of Binary Topological Relations. Journal of Visual Languages and Computing 5(2), 133–149 (1994)CrossRefGoogle Scholar
  13. 13.
    Blaser, A.: Sketching Spatial Queries, Ph.D. Thesis. In Department of Spatial Information Science and Engineering, University of Maine, Orono, ME (2000)Google Scholar
  14. 14.
    Florence, J., Egenhofer, M.: Distribution of Topological Relations in Geographic Datasets. In: ACSM/ASPRS Conference, Baltimore, MD (1996)Google Scholar
  15. 15.
    Papadias, D., Arkoumanis, D., Karacapilidis, N.: On the Retrieval of Similar Configurations. In: Poiker, T., Chrisman, N. (eds.) 8th International Symposium on Spatial Data Handling, International Geographical Union, Vancouver, Canada, pp. 510–521 (1998)Google Scholar
  16. 16.
    Papadias, D., Kalnis, P., Mamoulis, N.: Hierarchical Constraint Satisfaction in Spatial Databases. In: Proceeding of the Annual Meeting of the AAAI, Orlando, FL, pp. 142–147 (1999)Google Scholar
  17. 17.
    Meseguer, P.: Constraint Satisfaction Problems: an Overview. AICOM 2(1), 3–17 (1989)Google Scholar
  18. 18.
    Egenhofer, M., Sharma, J.: Assessing the Consistency of Complete and Incomplete Topological Information. Geographical Systems 1, 47–68 (1993)Google Scholar
  19. 19.
    Egenhofer, M., Franzosa, R.: Point-Set Topological Spatial Relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)CrossRefGoogle Scholar
  20. 20.
    Randell, D., Cui, Z., Cohn, A.: A Spatial Logic Based on Regions and Connection. In: Nebel, B., Rich, C., Swarthout, W. (eds.) Principles of Knowledge Representation and Reasoning, KR 1992, pp. 65–176. Morgan Kaufmann, Cambridge (1992)Google Scholar
  21. 21.
    Egenhofer, M., Al-Taha, K.: Reasoning About Gradual Changes of Topological Relations. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 196–219. Springer, Heidelberg (1992)Google Scholar
  22. 22.
    Gaede, V., Günther, O.: Multidimensional Access Method. ACM Computing Surveys 30(2), 170–231 (1998)CrossRefGoogle Scholar
  23. 23.
    Egenhofer, M., Shariff, A.: Metric Details for Natural-Language Spatial Relations. ACM Transactions on Information Systems 16(4), 295–321 (1998)CrossRefGoogle Scholar
  24. 24.
    Godoy, F., Rodríguez, A.: A Quantitative Description of Spatial Configurations. In: Richardson, D., van Oosterom, P. (eds.) Spatial Data Handling, pp. 299–311. Springer, Ottawa (2002)Google Scholar
  25. 25.
    Tarski, A.: On The Calculus of Relations. Journal of Symbolic Logic 6(3), 73–89 (1941)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Mackworth, A.: Consistency in Networks of Relations. Artificial Intelligence 8, 99–118 (1977)zbMATHCrossRefGoogle Scholar
  27. 27.
    Maddux, R.: Some Algebras and Algorithms for Reasoning about Time and Space. Department of Mathematics, Iowa State University, Ames, IO (1990)Google Scholar
  28. 28.
    Smith, T., Park, K.: Algebraic Approach to Spatial Reasoning. International Journal of Geographical Information Systems 6(3), 177–192 (1992)CrossRefGoogle Scholar
  29. 29.
    Tobler, W.: Cellular Geography. In: Gale, S., Olsson, G. (eds.) Philosophy in Geography, D. Reidel Publishing Company, Dordrecht (1979)Google Scholar
  30. 30.
    Toussaint, G.: The Relative Neighborhood Graph of a Finite Planar Set. Pattern Recognition 12, 261–268 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Jaramcyzk, J., Toussaint, G.: Relative Graph and their Relatives. Proceedings of the IEEE 80(9), 1502–1517 (1992)CrossRefGoogle Scholar
  32. 32.
    O’Rourke, J.: Computational Geometry. Cambridge University Press, Cambridge (1993)Google Scholar
  33. 33.
    Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer, Berlin (1985)Google Scholar
  34. 34.
    Bacchus, F., Grove, A.: On the Forward Checking Algorithm. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 292–309. Springer, Heidelberg (1995)Google Scholar
  35. 35.
    Egenhofer, M.: Spatial SQL: A Query and Presentation Language. IEEE Transactions on Knowledge and Data Engineering 6(1), 86–95 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. Andrea Rodríguez
    • 1
  • Max J. Egenhofer
    • 2
    • 3
  • Andreas D. Blaser
    • 4
  1. 1.Department of Information Engineering and Computer ScienceUniversity of ConcepciónConcepciónChile
  2. 2.National Center for Geographic Information and AnalysisUniversity of MaineOronoUSA
  3. 3.Department of Information ScienceUniversity of MaineOronoUSA
  4. 4.Environmental Systems Research InstituteRedlandsUSA

Personalised recommendations