Region-Based Query Languages for Spatial Databases in the Topological Data Model

  • Luca Forlizzi
  • Bart Kuijpers
  • Enrico Nardelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2750)


We consider spatial databases in the topological data model, i.e., databases that consist of a finite number of labeled regions in the real plane. Such databases partition the plane further into elementary regions. We propose a first-order language, which uses elementary-region variables and label variables, to query spatial databases. All queries expressible in this first-order logic are topological\/ and they can be evaluated in polynomial time. Furthermore, the proposed language is powerful enough to distinguish between any two spatial databases that are not topologically equivalent. This language does not allow the expression of all computable topological queries, however, as is illustrated by the connectivity query. We also study some more powerful extensions of this first-order language, e.g., with a while-loop. In particular, we describe an extension that is sound and computationally complete for the topological queries on spatial databases in the topological data model.


Elementary Region Query Language Spatial Database Connectivity Query Real Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  2. 2.
    Benedikt, M., Grohe, M., Libkin, L., Segoufin, L.: Reachability and connectivity queries in constraint databases. In: Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2000), pp. 104–115 (2000)Google Scholar
  3. 3.
    Bochnak, J., Coste, M., Roy, M.F.: Géométrie Algébrique Réelle. Springer, Heidelberg (1987)zbMATHGoogle Scholar
  4. 4.
    Chandra, A., Harel, D.: Computable queries for relational database systems. Journal of Computer and System Sciences 21(2), 156–178 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Chandra, A., Harel, D.: Structure and complexity of relational queries. Journal of Computer and System Sciences 25, 99–128 (1982)zbMATHCrossRefGoogle Scholar
  6. 6.
    Ebbinghaus, H.-D., Flum, J., Thomas, W.: Mathematical Logic. In: Undergraduate Texts in Mathematics. Springer, Heidelberg (1984)Google Scholar
  7. 7.
    Egenhofer, M.: Reasoning about binary topological relations. In: Günther, O., Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525, pp. 143–160. Springer, Heidelberg (1991)Google Scholar
  8. 8.
    Egenhofer, M.: Topological relations between regions in R2 and Z2. In: Abel, D.J., Ooi, B.-C. (eds.) SSD 1993. LNCS, vol. 692, pp. 316–336. Springer, Heidelberg (1993)Google Scholar
  9. 9.
    Egenhofer, M., Franzosa, R.: On the equivalence of topological relations. International Journal Geographical Information Systems, 523–542 (1994)Google Scholar
  10. 10.
    Forlizzi, L., Nardelli, E.: Some results on the modelling of spatial data. In: Rovan, B. (ed.) SOFSEM 1998. LNCS, vol. 1521, pp. 332–343. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Forlizzi, L., Nardelli, E.: Characterization results for the poset based representation of topological relations-I: Introduction and models. Informatica (Slovenia) 23(2), 332–343 (1999)MathSciNetGoogle Scholar
  12. 12.
    Geerts, F., Kuijpers, B.: Linear approximation of planar spatial databases using transitive-closure logic. In: Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2000), pp. 126–135 (2000)Google Scholar
  13. 13.
    Giannella, C., Van Gucht, D.: Adding a path connectedness operator to FO+poly (linear). Acta Informatica 38(9), 621–648 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Grumbach, S., Kuper, G.: Tractable recursion over geometric data. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 450–462. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  15. 15.
    Heintz, J., Roy, M.-F., Solernó, P.: Description of the connected components of a semialgebraic set in single exponential time. Discrete and Computational Geometry 6, 1–20 (1993)Google Scholar
  16. 16.
    Kainz, W.: Spatial relationships-topology versus order. In: Proceedings of the 4th International Symposium on Spatial Data Handling, vol. 2, pp. 814–819 (1990)Google Scholar
  17. 17.
    Kainz, W., Egenhofer, M., Greasley, I.: Modelling spatial relations and operations with partially ordered sets. International Journal of Geographical Information Systems 7(3), 215–229 (1993)CrossRefGoogle Scholar
  18. 18.
    Kreutzer, S.: Fixed-point query languages for linear constraint databases. In: Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2000), pp. 116–125 (2000)Google Scholar
  19. 19.
    Kuijpers, B.: Topological Properties of Spatial Databases in the Polynomial Constraint Model. PhD thesis. University of Antwerp, UIA (1998)Google Scholar
  20. 20.
    Kuijpers, B., Paredaens, J., Smits, M., Van den Bussche, J.: Termination properties of spatial Datalog programs. In: Pedreschi, D., Zaniolo, C. (eds.) LID 1996. LNCS, vol. 1154, pp. 101–116. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  21. 21.
    Kuijpers, B., Paredaens, J., Van den Bussche, J.: Lossless representation of topological spatial data. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 1–13. Springer, Heidelberg (1995)Google Scholar
  22. 22.
    Kuijpers, B., Paredaens, J., Van den Bussche, J.: Topological elementary equivalence of closed semi-algebraic sets in the real plane. The Journal of Symbolic Logic 65(4), 1530–1555 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Kuijpers, B., Van den Bussche, J.: On capturing first-order topological properties of planar spatial databases. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 187–198. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Kuijpers, B., Vianu, V.: Topological queries. In: Paredaens, J., Kuper, G., Libkin, L. (eds.) Constraint databases, ch. 2, pp. 231–274. Springer, Heidelberg (2000)Google Scholar
  25. 25.
    Papadimitriou, C.H., Suciu, D., Vianu, V.: Topological queries in spatial databases. Journal of Computer and System Sciences 58(1), 29–53 (1999); An extended abstract appeared in PODS 1996zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Paredaens, J., Kuper, G., Libkin, L. (eds.): Constraint databases. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  27. 27.
    Pratt, I.: First-order qualitative spatial representation languages with convexity. Spatial Cognition and Computation 1, 181–204 (1999)CrossRefGoogle Scholar
  28. 28.
    Pratt, I., Lemon, O.: Ontologies for plane, polygonal mereotopology. Notre Dame Journal of Formal Logic 38(2), 225–245 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Pratt, I., Schoop, D.: A complete axiom system for polygonal mereotopology of the real plane. Journal of Philosophical Logic 27(6), 621–661 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Principles of Knowledge Representation and Reasoning: Proceedings of the 3rd International Conference (KR 1992), pp. 165–176. Morgan Kaufmann, San Francisco (1992)Google Scholar
  31. 31.
    Revesz, P.: Introduction to Constraint Databases. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  32. 32.
    Segoufin, L., Vianu, V.: Querying spatial databases via topological invariants. Journal of Computer and System Sciences 61(2), 270–301 (2000); An extended abstract appeared in PODS 1998 zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Stillwell, J.: Classical Topology and Combinatorial Group Theory. Graduate Texts in Mathematics, vol. 72. Springer, Heidelberg (1980)Google Scholar
  34. 34.
    Talamo, M., Vocca, P.: A data structure for lattice representation. Theoretical Computer Science 175(2), 373–392 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Ullman, J.: Principles of Database and Knowledge-Base Systems, vol. I and II. Computer Science Press, Rockville (1989)Google Scholar
  36. 36.
    Van den Bussche, J., Cabibbo, L.: Converting untyped formulas to typed ones. Acta Informatica 35(8), 637–643 (1998)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Luca Forlizzi
    • 1
  • Bart Kuijpers
    • 2
  • Enrico Nardelli
    • 1
    • 3
  1. 1.Dipartimento di InformaticaUniversity of L’AquilaL’AquilaItaly
  2. 2.Dept. of Mathematics, Physics and Computer ScienceUniversity of LimburgDiepenbeekBelgium
  3. 3.IASI–CNRRomaItaly

Personalised recommendations