On-Line Discovery of Dense Areas in Spatio-temporal Databases

  • Marios Hadjieleftheriou
  • George Kollios
  • Dimitrios Gunopulos
  • Vassilis J. Tsotras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2750)


Moving object databases have received considerable attention recently. Previous work has concentrated mainly on modeling and indexing problems, as well as query selectivity estimation. Here we introduce a novel problem, that of addressing density-based queries in the spatio-temporal domain. For example: “Find all regions that will contain more than 500 objects, ten minutes from now”. The user may also be interested in finding the time period (interval) that the query answer remains valid. We formally define a new class of density-based queries and give approximate, on-line techniques that answer them efficiently. Typically the threshold above which a region is considered to be dense is part of the query. The difficulty of the problem lies in the fact that the spatial and temporal predicates are not specified by the query. The techniques we introduce find all candidate dense regions at any time in the future. To make them more scalable we subdivide the spatial universe using a grid and limit queries within a pre-specified time horizon. Finally, we validate our approaches with a thorough experimental evaluation.


Hash Function Bloom Filter Density Threshold Horizon Length Move Object Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P., Arge, L., Vahrenhold, J.: Time responsive indexing schemes for moving points. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, p. 50. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. In: Proc. of the 19th ACM Symp. on Principles of Database Systems (PODS), pp. 175–186 (2000)Google Scholar
  3. 3.
    Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. In: Proc. of ACM SIGMOD Conference, June 1998, pp. 94–105 (1998)Google Scholar
  4. 4.
    Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. Journal of Computer and System Sciences 58(1), 137–147 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7), 422–426 (1970)zbMATHCrossRefGoogle Scholar
  6. 6.
    Broder, A., Mitzenmacher, M.: Network Applications of Bloom Filters: A Survey. To appear in Allerton 2002 (2002)Google Scholar
  7. 7.
    Chen, C.-M., Ling, Y.: A sampling-based estimator for Top-k query. In: Proc of IEEE ICDE (2002)Google Scholar
  8. 8.
    Choi, Y.-J., Chung, C.-W.: Selectivity estimation for spatio-temporal queries to moving objects. In: Proc. of ACM SIGMOD (2002)Google Scholar
  9. 9.
    Chon, H.D., Agrawal, D., El Abbadi, A.: Storage and retrieval of moving objects. Mobile Data Management, 173–184 (2001)Google Scholar
  10. 10.
    Jensen, C. (ed.): Special issue on indexing moving objects. Data Engineering Bulletin (2002)Google Scholar
  11. 11.
    Elbassioni, K., Elmasry, A., Kamel, I.: An efficient indexing scheme for multidimensional moving objects. In: 9th International Conference on Database Theory, Siena, Italy (2003) (to appear)Google Scholar
  12. 12.
    Fan, L., Almeida, J., Cao, P., Broder, A.: Summary cache: a scalable wide-area web cache sharing protocol. IEEE/ACM Transactions on Networking 8(3), 281–293 (2000)CrossRefGoogle Scholar
  13. 13.
    Gibbons, P., Matias, Y.: New sampling-based summary statistics for improving approximate query answers. In: Proc. of ACM SIGMOD (April 1998)Google Scholar
  14. 14.
    Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Surfing Wavelets on Streams: One-Pass Summaries for Approximate Aggregate Queries. The VLDB Journal (September 2001)Google Scholar
  15. 15.
    Ibarra, O., Mokhtar, H., Su, J.: On moving object queries. In: Proc. 21st ACM PODS Symposium on Princeples of Database Systems, Madison, Wisconsin, pp. 188–198 (2002)Google Scholar
  16. 16.
    Kollios, G., Gunopulos, D., Tsotras, V.: Nearest Neighbor Queries in a Mobile Environment. In: Proc. of the Spatio-Temporal Database Management Workshop, Edinburgh, Scotland, pp. 119–134 (1999)Google Scholar
  17. 17.
    Kollios, G., Gunopulos, D., Tsotras, V.: On Indexing Mobile Objects. In: Proc. of the 18th ACM Symp. on Principles of Database Systems (PODS), June 1999, pp. 261–272 (1999)Google Scholar
  18. 18.
    Manku, G.S., Motwani, R.: Approximate Frequency Counts over Data Streams. In: Proc. of 28th VLDB, August 2002, pp. 346–357 (2002)Google Scholar
  19. 19.
    Chaudhuri, S., Bruno, N., Gravano, L.: Top-k selection queries over relational databases: Mapping strategies and performance evaluation. ACM TODS 27(2) (2002)Google Scholar
  20. 20.
    Porkaew, K., Lazaridis, I., Mehrotra, S.: Querying mobile objects in spatiotemporal databases. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 59. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Saltenis, S., Jensen, C.: Indexing of Moving Objects for Location-Based Services. In: Proc. of IEEE ICDE (2002)Google Scholar
  22. 22.
    Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.A.: Indexing the Positions of Continuously Moving Objects. In: Proceedings of the ACM SIGMOD, May 2000, pp. 331–342 (2000)Google Scholar
  23. 23.
    Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S.: Modeling and Querying Moving Objects. In: Proceedings of the 13th ICDE, Birmingham, U.K, April 1997, pp. 422–432 (1997)Google Scholar
  24. 24.
    Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 79–96. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Tao, Y., Papadias, D.: Time-parameterized queries in spatio-temporal databases. In: Proc. of ACM SIGMOD (2002)Google Scholar
  26. 26.
    Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: Proc. of VLDB (2002)Google Scholar
  27. 27.
    Tao, Y., Sun, J., Papadias, D.: Selectivity estimation for predictive spatiotemporal queries. In: Proceedings of 19th IEEE International Conference on Data Engineering, ICDE (2003) (to appear)Google Scholar
  28. 28.
    Wang, M., Vitter, J.S., Lim, L., Padmanabhan, S.: Wavelet-based cost estimation for spatial queries. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 175–196. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Wang, W., Yang, J., Muntz, R.: STING: A statistical information grid approach to spatial data mining. The VLDB Journal, 186–195 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Marios Hadjieleftheriou
    • 1
  • George Kollios
    • 2
  • Dimitrios Gunopulos
    • 1
  • Vassilis J. Tsotras
    • 1
  1. 1.Computer Science DepartmentUniversity of CaliforniaRiverside
  2. 2.Computer Science DepartmentBoston University 

Personalised recommendations