Advertisement

On Spatial-Range Closest-Pair Query

  • Jing Shan
  • Donghui Zhang
  • Betty Salzberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2750)

Abstract

An important query for spatial database research is to find the closest pair of objects in a given space. Existing work assumes two objects of the closest pair come from two different data sets indexed by R-trees. The closest pair in the whole space will be found via an optimzed R-tree join technique. However, this technique doesn’t perform well when the two data sets are identical. And it doesn’t work when the search range is some area other than the whole space. In this paper, we address the closest pair problem within the same data set. Further more, we propose a practical extension to the closest pair problem to involve a query range. The problem now becomes finding the closest pair of objects among those inside a given range. After extending the existing techniques to solve the new problem, we proposed two index structures based on augmenting the R-tree and we also give algorithms for maintaining these structrures. Experimental results show that our structures are more robust than earlier approaches.

Keywords

Index Structure Query Range Spatial Database Query Time Close Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
    Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: an efficient and robust access method for points and rectangles. In: Proceedings of ACM/SIGMOD Annual Conference on Management of Data (1990)Google Scholar
  4. 4.
    Berchtold, S., Ertl, B., Keim, D.A., Kriegel, H.-P., Seidl, T.: Fast nearest neighbor search in high-dimensional space. In: Proceedings of the 14th International Conference on Data Engineering, ICDE (1998)Google Scholar
  5. 5.
    Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos. M.: Closest pair queries in spatial databases. Technical Report, Aristotle Univ. of Thessaloniki, Greece (1999), http://delab.csd.auth.gr/~michaliz/cpq.html
  6. 6.
    Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest pair queries in spatial databases. In: Proceedings of ACM/SIGMOD Annual Conference on Management of Data (2000)Google Scholar
  7. 7.
    Dietzfelbinger, M., Hagerup, T., Katajainen, J., Penttonen, M.: A reliable randomized algorithm for the closest-pair problem. Journal of Algorithms 25(1) (1997)Google Scholar
  8. 8.
    Gaede, V., Günther, O.: Multidimensional access methods. ACM Computing Surveys 30(2) (1998)Google Scholar
  9. 9.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of ACM/SIGMOD Annual Conference on Management of Data (1984)Google Scholar
  10. 10.
    Hjaltason, G.R., Samet, H.: Incremental distance join algorithms for spatial databases. In: Proceedings of ACM/SIGMOD Annual Conference on Management of Data, Seattle, WA, USA (1998)Google Scholar
  11. 11.
    Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Transactions on Database Systems, TODS (June 1999)Google Scholar
  12. 12.
    Katayama, N., Satoh, S.: The SR-tree: An index structure for high-dimensional nearest neighbor queries. In: Proceedings of ACM/SIGMOD Annual Conference on Management of Data (1997)Google Scholar
  13. 13.
    Kollios, G., Gunopulos, D., Tsotras, V.J.: Nearest neighbor queries in a mobile environment. In: Proceedings of the International Workshop on Spatio-Temporal Database Management, pp. 119–134 (1999)Google Scholar
  14. 14.
    Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor queries. In: Proceedings of ACM/SIGMOD Annual Conference on Management of Data (2000)Google Scholar
  15. 15.
    Roussopoulos, N., Kelly, S., Vincent, F.: Nearest neighbor queries. In: Proceedings of ACM/SIGMOD Annual Conference on Management of Data (1995)Google Scholar
  16. 16.
    Seidl, T., Kriegel, H.-P.: Optimal multi-step k-nearest neighbor search. In: Proceedings of ACM/SIGMOD Annual Conference on Management of Data (1998)Google Scholar
  17. 17.
    Smid, M.: Closest point problems in computational geometry. In: Sack, J.-R., Urrutia, J. (eds.) Handbook on Computational Geometry. Elsevier Science Publishing, Amsterdam (1997)Google Scholar
  18. 18.
    Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: Proceedings of the 7th International Symposium on Spatial and Temporal Databases, pp. 79–96 (2001)Google Scholar
  19. 19.
    Stanoi, I., Agrawal, D., Abbadi, A.E.: Reverse nearest neighbor queries for dynamic databases. In: Proceedings of the ACM SIGMOD Workshop on Research Issu in Data Mining and Knowledge Discovery (2000)Google Scholar
  20. 20.
    van den Bercken, J., Dittrich, J.-P., Blohsfeld, B., Krämer, J., Schäfer, T., Schneider, M., Seeger, B.: XXL- a library arrproach to supporting efficient implementations of advanced database queries. In: Proceedings of the 27th VLDB Conference (2001)Google Scholar
  21. 21.
    Yang, C., Lin, K.: An index structure for improving closest pairs and related join queries in spatial databses. In: Proceedings of the International Database Engineering and Applications Symposium, IDEAS 2002 (2002)Google Scholar
  22. 22.
    Yang, C., Lin, K.-I.: An index structure for efficient reverse nearest neighbor queries. In: Proceedings of the 14th International Conference on Data Engineering, ICDE (2001)Google Scholar
  23. 23.
    Zhang, D., Tsotras, V. J., Seeger. B.: A comparison of indexed temporal joins. Tech Report, UCR-CS-00-03, CS Dept., UC Riverside (2000), http://www.cs.ucr.edu/~donghui/publications/tempjoin.ps
  24. 24.
    Zhang, D., Tsotras, V.J., Seeger, B.: Efficient temporal join processing using indices. In: Proceedings of the 14th International Conference on Data Engineering, ICDE (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jing Shan
    • 1
  • Donghui Zhang
    • 1
  • Betty Salzberg
    • 1
  1. 1.College of Computer and Information ScienceBostonUSA

Personalised recommendations