Skip to main content

Generalizing the Motzkin-Straus Theorem to Edge-Weighted Graphs, with Applications to Image Segmentation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2683))

Abstract

The Motzkin-Straus theorem is a remarkable result from graph theory that has recently found various applications in computer vision and pattern recognition. Given an unweighted undirected graph G with adjacency matrix A, it establishes a connection between the local/global solutions of the following quadratic program:

$$ maximize x^T A x / 2 $$
$$subject to e^T x=1, x \in \mathbb{R}_+^n $$

where e = (1,...,1)T, and the maximal/maximum cliques of G. Given an edge-weighted undirected graph G and the corresponding weight matrix A, in this paper we address the following question: What kind of (combinatorial) structures of G are associated to the (continuous) local solutions of our quadratic program? We show that these structures correspond to a “weighted” generalization of maximal cliques, thereby providing a first step towards an edge-weighted generalization of the Motzkin-Straus theorem. Moreover, we show how these structures can be relevant in clustering as well as image segmentation problems. We present experimental results on real-world images which show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auguston, J.G., Minker, J.: An analysis of some graph theoretical clustering techniques. J. ACM 17(4), 571–588 (1970)

    Article  Google Scholar 

  2. Bomze, I.M.: Evolution towards the maximum clique. J. Global Optim. 10, 143–164 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, (Suppl. Vol. A), pp. 1–74. Kluwer, Boston (1999)

    Google Scholar 

  4. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Preprint available at: http://www.cs.cornell.edu/~dph/papers/segrevised.pdf

  5. Forsyth, D., Ponce, J.: Computer Vision: A Modern Approach. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  6. Gdalyahu, Y., Weinshall, D., Werman, M.: Sef-organization in vision: Stochastic clustering for image segmentation, perceptual grouping, and image database organization. IEEE Trans. Pattern Anal. Machine Intell. 23(10), 1053–1074 (2001)

    Article  Google Scholar 

  7. Gibbons, L.E., Hearn, D.W., Pardalos, P.M., Ramana, M.V.: Continuous characterizations of the maximum clique problem. Math. Oper. Res. 22, 754–768 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gotlieb, C.C., Kumar, S.: Semantic clustering of index terms. J. ACM 15(4), 493–513 (1968)

    Article  Google Scholar 

  9. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  10. Luenberger, D.G.: Linear and Nonlinear Programming. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  11. Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turán. Canad. J. Math. 17, 533–540 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pavan, M., Pelillo, M., Jabara, E.: On the combinatorics of standard quadratic optimization (2003) (forthcoming)

    Google Scholar 

  13. Pelillo, M.: Replicator equations, maximal cliques, and graph isomorphism. Neural Computatio 11(8), 2023–2045 (1999)

    Google Scholar 

  14. Pelillo, M.: Matching free trees, maximal cliques, and monotone game dynamics. IEEE Trans. Pattern Anal. Machine Intell. 24(11), 1535–1541 (2002)

    Article  Google Scholar 

  15. Pelillo, M., Jagota, A.: Feasible and infeasible maxima in a quadratic program for maximum clique. J. Artif. Neural Networks 2, 411–420 (1995)

    Google Scholar 

  16. Pelillo, M., Siddiqi, K., Zucker, S.W.: Matching hierarchical structures using association graphs. IEEE Trans. Pattern Anal. Machince Intell. 21(11), 1105–1120 (1999)

    Article  Google Scholar 

  17. Raghavan, V.V., Yu, C.T.: A comparison of the stability characteristics of some graph theoretic clustering methods. IEEE Trans. Pattern Anal. Machine Intell. 3, 393–402 (1981)

    Article  MATH  Google Scholar 

  18. Sarkar, S., Boyer, K.L.: Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors. Computer Vision and Image Understanding 71(1), 110–136 (1998)

    Article  Google Scholar 

  19. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Machine Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  20. Sós, V.T., Straus, E.G.: Extremal of functions on graphs with applications to graphs and hypergraphs. J. Combin. Theory B 32, 246–257 (1982)

    Article  MATH  Google Scholar 

  21. Weibull, J.W.: Evolutionary Game Theory. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  22. Wilf, H.S.: Spectral bounds for the clique and independence numbers of graphs. J. Combin. Theory B 40, 113–117 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Trans. Pattern Anal. Machine Intell. 15(11), 1101–1113 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pavan, M., Pelillo, M. (2003). Generalizing the Motzkin-Straus Theorem to Edge-Weighted Graphs, with Applications to Image Segmentation. In: Rangarajan, A., Figueiredo, M., Zerubia, J. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2003. Lecture Notes in Computer Science, vol 2683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45063-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45063-4_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40498-9

  • Online ISBN: 978-3-540-45063-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics