Skip to main content

A Fast GEM Algorithm for Bayesian Wavelet-Based Image Restoration Using a Class of Heavy-Tailed Priors

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2683))

Abstract

The paper introduces modelling and optimization contributions on a class of Bayesian wavelet-based image deconvolution problems. Main assumptions of this class are: 1) space-invariant blur and additive white Gaussian noise; 2) prior given by a linear (finite of infinite) decomposition of Gaussian densities. Many heavy-tailed priors on wavelet coefficients of natural images admit this decomposition. To compute the maximum a posteriori (MAP) estimate, we propose a generalized expectation maximization (GEM) algorithm where the missing variables are the Gaussian modes. The maximization step of the EM algorithm is approximated by a stationary second order iterative method. The result is a GEM algorithm of

$$O(N\log N)$$

computational complexity. In comparison with state-of-the-art methods, the proposed algorithm either outperforms or equals them, with low computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jain, A.: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  2. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,PAMI 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  3. Poggio, T., Torre, V., Koch, C.: Computational vision and regularization theory. Nature 317, 314–319 (1985)

    Article  Google Scholar 

  4. Terzopoulos, D.: Regularization of inverse visual problems involving discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence,PAMI 8(4), 413–424 (1986)

    Article  Google Scholar 

  5. Katsaggelos, A. (ed.): Digital Image Restoration. Spriger, New York (1991)

    Google Scholar 

  6. Katsaggelos, A., Biemond, J., Schafer, R., Mersereau, R.: A regularized iterative image restoration algorithm. IEEE Transactions on Signal Processing 39(4), 914–929 (1991)

    Article  Google Scholar 

  7. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)

    Google Scholar 

  8. Jeng, F., Woods, J.: Compound Gauss-Markov random fields for image processing. In: Katsaggelos, A. (ed.) Digital Image Restoration, pp. 89–108. Springer, Heidelberg (1991)

    Google Scholar 

  9. Donoho, D.: Nonlinear solution of linear inverse problems by wavelet-vaguelette decompositions. Journal of Applied and Computational Harmonic Analysis 1, 100–115 (1995)

    Article  MathSciNet  Google Scholar 

  10. Banham, M., Katsaggelos, A.: Spatially adaptive wavelet-based multiscale image restoration. IEEE Transactions on Image Processing 5, 619–634 (1996)

    Article  Google Scholar 

  11. Abramovich, F., Sapatinas, T., Silverman, B.: Wavelet thresholding via a Bayesian approach. Journal of the Royal Statistical Society (B) 60 (1998)

    Google Scholar 

  12. Liu, J., Moulin, P.: Complexity-regularized image restoration. In: Proc. IEEE Int. Conf. on Image Proc., pp. 555–559 (1998)

    Google Scholar 

  13. Wan, Y., Nowak, R.: A wavelet-based approach to joint image restoration and edge detection. In: SPIE Conference on Wavelet Applications in Signal and Image Processing VII, Denver, CO, vol. 3813. SPIE, San Jose (1999)

    Google Scholar 

  14. Kalifa, J., Mallat, S.: Minimax restoration and deconvolution. In: Muller, P., Vidakovic, B. (eds.) Bayesian Inference in Wavelet Based Models. Springer, New York (1999)

    Google Scholar 

  15. Jalobeanu, A., Kingsbury, N., Zerubia, J.: Image deconvolution using hidden Markov tree modeling of complex wavelet packets. In: Proceedings of the IEEE International Conference on Image Processing – ICIP 2001, Thessaloniki, Greece (2001)

    Google Scholar 

  16. Figueiredo, M., Nowak, R.: An em algorithm for wavelet-based image restoration. IEEE Transactions on Image Processing (2003) available in, http://www.lx.it.pt/~mtf/ (accepted for publication)

  17. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  18. Neelamani, R., Choi, H., Baraniuk, R.: Wavelet-based deconvolution using optimally inversion for ill-conditioned systems. Wavelet Applications in Signal and Image Processing 3169, 389–399 (2001)

    Google Scholar 

  19. Robert, C.: The Bayesian Choice. In: A Decision-Theoritic Motivation. Springer, Heidelberg (1994)

    Google Scholar 

  20. Figueiredo, M., Nowak, R.: Wavelet-based image estimation: an empirical Bayes approach using Jeffreys’ noninformative prior. IEEE Transactions on Image Processing 10(9), 1322–1331 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Neelamani, R., Choi, H., Baraniuk, R.: Wavelet-based deconvolution for illconditioned systems. IEEE Transactions on Image Processing (2001) (submitted)

    Google Scholar 

  22. Moulin, P., Liu, J.: Analysis of multiresolution image denoising schemes using generalized -Gaussian and complexity priors. IEEE Transactions on Information Theory 45, 909–919 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Girosi, F.: Models of noise and robust estimates. Massachusetts Institute of Technology. Artificial Intelligence Laboratory (Memo 1287) and Center for Biological and Computational Learning, Paper 66 (1991)

    Google Scholar 

  24. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  25. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, New York (1996)

    MATH  Google Scholar 

  26. Coifman, R., Donoho, D.: Translation invariant de-noising. In: Wavelets and Statistics, New York. Lecture Notes in Statistics, pp. 125–150. Springer, Heidelberg (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bioucas-Dias, J.M. (2003). A Fast GEM Algorithm for Bayesian Wavelet-Based Image Restoration Using a Class of Heavy-Tailed Priors. In: Rangarajan, A., Figueiredo, M., Zerubia, J. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2003. Lecture Notes in Computer Science, vol 2683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45063-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45063-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40498-9

  • Online ISBN: 978-3-540-45063-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics