Skip to main content

A Compositionality Architecture for Perceptual Feature Grouping

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2683))

Abstract

We propose a compositionality architecture for perceptual organization which establishes a novel, generic, algorithmic framework for feature binding and condensation of semanticemm information in images. The underlying algorithmic ideas require a hierarchical structure for various types of objects and their groupings, which are guided by gestalt laws from psychology. A rich set of predefined feature detectors with uncertainty that perform real-valued measurements of relationships between objects can be combined in this flexible Bayesian framework. Compositions are inferred by minimizing the negative posterior grouping probability. The model structure is founded on the fundamental perceptual law of Prägnanz. The grouping algorithm performs hierarchical agglomerative clustering and it is rendered computationally feasible by visual pop-out. Evaluation on the edgel grouping task confirms the robustness of the architecture and its applicability to grouping in various visual scenarios.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amir, A., Lindenbaum, M.: A generic grouping algorithm and its quantitative analysis. IEEE Trans. Pattern Anal. Machine Intell. 20(2), 186–192 (1998)

    Article  Google Scholar 

  2. Attneave, F.: Some informational aspects of visual perception. Psychological Review 61(3), 183–193 (1954)

    Article  Google Scholar 

  3. Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychological Review 94(2), 115–147 (1987)

    Article  Google Scholar 

  4. Bienenstock, E.: Notes on the growth of a composition machine. In: Proceedings of the Royaumont Interdisciplinary Workshop on Compositionality in Cognition and Neural Networks (1991)

    Google Scholar 

  5. Bruce, V., Green, P.R., Georgeson, M.A.: Visual Perception: Physiology, Psychology, and Ecology, 3rd edn. Psychology Press, San Diego (1996)

    Google Scholar 

  6. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  7. Geman, S., Potter, D.F., Chi, Z.: Composition Systems. Technical report, Division of Applied Mathematics, Brown University, Providence, RI (1998)

    Google Scholar 

  8. Goldstein, E.B.: Sensation and Perception, 3rd edn. Wadsworth, Belmont (1989)

    Google Scholar 

  9. Jacobs, D.W.: Grouping for recognition. In: MIT AI Lab Memo 1177. MIT, Cambridge (1989)

    Google Scholar 

  10. Li, Z.: A V1 model of pop out and asymmetry in visual search. Advances in Neural Information Processing Systems 11 (1999)

    Google Scholar 

  11. Lowe, D.G.: Perceptual Organization and Visual Recognition. Kluwer Academic Publishers, Norwell (1985)

    Google Scholar 

  12. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV-WS 1999, vol. 8 ( July 2001)

    Google Scholar 

  13. Ommer, B.: An algorithmic framework for visual grouping by perceptual organization. Diploma thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2003)

    Google Scholar 

  14. Shashua, A., Ullman, S.: Structural saliency: The detection of globally salient structures using a locally connected network. In: ICCV (1988)

    Google Scholar 

  15. Tagare, H.D., Toyama, K., Wang, J.G.: A maximumlikelihood strategy for directing attention during visual search. IEEE Trans. Pattern Anal. Machine Intell. 23(5), 490–500 (2001)

    Article  Google Scholar 

  16. Treisman, A.: Features and objects in visual processing. Scientific American 254(11), 114–125 (1986)

    Article  Google Scholar 

  17. Williams, L.R., Thornber, K.K.: A comparison of measures for detecting natural shapes in cluttered backgrounds. J. Computer Vision 34, 81–96 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ommer, B., Buhmann, J.M. (2003). A Compositionality Architecture for Perceptual Feature Grouping. In: Rangarajan, A., Figueiredo, M., Zerubia, J. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2003. Lecture Notes in Computer Science, vol 2683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45063-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45063-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40498-9

  • Online ISBN: 978-3-540-45063-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics