Skip to main content

On a Universal Mechanism of Turbulence Production in Wall Shear Flows

  • Conference paper
Recent Results in Laminar-Turbulent Transition

Summary

The paper is devoted to the problem of nonlinear laminar-flow breakdown in wall bounded shear flows during their transition to the turbulent state. A brief review of some previously obtained results in this field is presented. The main attention is concentrated on a comparative analysis of the nonlinear phenomena observed in boundary layers, channels, and pipe flows. The associated mechanisms of turbulence production are also compared with those observed in developed wall turbulent flows. A striking resemblance is found in all considered cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herbert T. Secondary instability of boundary layers. Ann. Rev. Fluid Mech. 20:487–526,1988.

    Article  Google Scholar 

  2. Kachanov Y.S. Physical mechanisms of laminar-boundary-layer transition. Ann. Rev. Fluid Mech. 26:411–482, 1994.

    Article  MathSciNet  Google Scholar 

  3. Bake S., Fernholz H.H., Kachanov Y.S. Resemblance of K- and N-regimes of boundary-layer transition at late stages. Eur. J. Mech., B/Fluids. 19(1):1–22, 2000.

    Article  MATH  Google Scholar 

  4. Borodulin V.I., Gaponenko V.R., Kachanov Y.S., Mayer D.G.W., Rist U., Lian Q.X., Lee C.B. Late-stage transitional boundary-layer structures. Direct numerical simulation and experiment. Theoretical and Computational Fluid Dynamics. 15: 317–337, 2002.

    Article  MATH  Google Scholar 

  5. Zelman M.B., Maslennikova II. Tollmien-Schlichting-wave resonant mechanism for subharmonic-type transition. J. Fluid Mech. 252:449–478, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  6. Rist U. & Kachanov Y.S. Numerical and experimental investigation of the K-regime of boundary-layer transition. In Laminar-Turbulent Transition (ed. R. Kobayashi), pp. 405–412. — Berlin: Springer, 1995.

    Chapter  Google Scholar 

  7. Kachanov Y.S., Ryzhov O.S., Smith F.T. Formation of solitons in transitional boundary layers: theory and experiments. J. Fluid Mech. 251:273–297, 1993.

    Article  MathSciNet  Google Scholar 

  8. Klebanoff P.S., Tidstrom K.D., Sargent L.M. The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12:1–34, 1962.

    Article  MATH  Google Scholar 

  9. Rist U., Müller K., Wagner S. Visualization of late-stage transitional structures in numerical data using vortex identification and feature extraction. In Proc. 8th Int. Sym. Flow Visualization, Sorrento, Italy. 1998, paper N. 103.

    Google Scholar 

  10. Hama F.R. & Nutant J. Detailed flow-field observations in the transition process in a thick boundary layer. In Proc. 1963 Heat Transfer & Fluid Mech. Inst. — Palo Alto, pp. 77–93 -Calif.: Stanford Univ. Press, 1963.

    Google Scholar 

  11. Crow S.C. Stability theory for a pair of trailing vortices. AIAA J. 8:2172–2179, 1970.

    Article  Google Scholar 

  12. Van Dyke M. An album offluid motion. - Stanford, California: Parabolic Press, 1982.

    Google Scholar 

  13. Moin P., Leonard A. & Kim J. Evolution of a curved vortex filament into a vortex ring. Phys. Fluids. 29(4):955–963, 1986.

    Article  Google Scholar 

  14. Falco R.E. Coherent motions in the outer region of turbulent boundary layer. Phys. Fluids Supp. 20(10):S124–132, 1977.

    Article  Google Scholar 

  15. Borodulin V.I., Gaponenko V.R., Kachanov Y.S. Generation and development of coherent structures in boundary layer at pulse excitation. In 10th Int. Conference on Methods of Aerophysical Research. Proceedings. Part II, pp. 37–42. — Novosibirsk: Inst. Theor. & Appl. Mech., 2000.

    Google Scholar 

  16. Dryganets, S.V., Kachanov, Y.S., Levchenko, V.Y. & Ramazanov, M.P. Resonant flow randomization in K-regime of boundary layer transition. Zurn. Priklad. Mekh. i Tekhn. Fiziki. 2:83–94, 1990 (in Russian). (Trans.: J App. Mech. & Tech. Phys. 31(2):239–249, 1990.)

    Google Scholar 

  17. Nishioka M., Asai M. Evolution of Tollmien-Schlichting waves into wall turbulence. In Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi), pp. 87–92. — Elsevier Science Publishers (North-Holland), 1984.

    Google Scholar 

  18. Rist U. Numerische Untersuchung der räumlichen, dreidimensionalen Störungsentwicklung beim Grenzschichtumschlag. Ph.D. thesis Inst. A Mech. Univ. Stuttgart, 1990.

    Google Scholar 

  19. Kozlov V.V., Ramazanov M.P. Resonance interaction of disturbances in Poiseuille flow. Dokl. Akad. Nauk SSSR. 275(6):1346–1349 (in Russian).

    Google Scholar 

  20. Kleiser L., Laurien E. Three-dimensional numerical simulation of laminar-turbulent transition and its control by periodic disturbances. In Laminar-Turbulent Transition (ed. V.V. Kozlov), pp. 27–37. — Berlin: Springer-Verlag, 1984.

    Google Scholar 

  21. Härtel C., Kleiser L. Subharmonic transition to turbulence in channel flow. Applied Scientiific Research. 51:43–47, 1993.

    Article  Google Scholar 

  22. Sandham N.D., Kleiser, L. The late stages of transition to turbulence in channel flow. J. Fluid Mech. 245:319–348, 1992.

    Article  MATH  Google Scholar 

  23. Han G., Tumin A., Wygnanski I. Laminar-turbulent transition in Poiseuille pipe flow subjected to periodic perturbation emanation from the wall. Part II. Late stage of transition. J. Fluid Mech. — 2001. (Accepted for publication.)

    Google Scholar 

  24. Reuter J., Rempfer D. A hybrid spectral/finite-difference scheme for the simulation of pipe-flow transition. In Laminar-Turbulent Transition (ed. H. Fasel & W.S. Saric), pp. 383–390. — Berlin: Springer-Verlag, 2000.

    Google Scholar 

  25. Zhou J., Adrian R.J., Balachandar S., Kendal T.M. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387:353–396, 1999.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kachanov, Y.S. (2004). On a Universal Mechanism of Turbulence Production in Wall Shear Flows. In: Wagner, S., Kloker, M., Rist, U. (eds) Recent Results in Laminar-Turbulent Transition. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45060-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45060-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07345-8

  • Online ISBN: 978-3-540-45060-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics