Skip to main content

Stochastic Conformational Roadmaps for Computing Ensemble Properties of Molecular Motion

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 7))

Abstract

A key intuition behind probabilistic roadmap planners for motion planning is that many collision-free paths potentially exist between two given robot configurations. Hence the connectivity of a robot’s free space can be captured effectively by a network of randomly sampled configurations. In this paper, a similar intuition is exploited to preprocess molecular motion pathways and efficiently compute their ensemble properties, i.e., properties characterizing the average behavior of many pathways. We construct a directed graph, called stochastic conformational roadmap, whose nodes are randomly sampled molecule conformations. A roadmap compactly encodes many molecular motion pathways. Ensemble properties are computed by viewing the roadmap as a Markov chain. A salient feature of this new approach is that it examines all the paths in the roadmap simultaneously, rather than one at a time as classic methods such as Monte Carlo (MC) simulation would do. It also avoids the local-minima problem encountered by the classic methods. Tests of the approach on two important biological problems show that it produces more accurate results and achieves several orders of magnitude reduction in computation time, compared with MC simulation.

Work completed at the University of North Carolina at Chapel Hill.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and D. Vallejo. OBPRM: An obstacle-based PRM for 3D workspaces. In P.K. Agarwal et al., editors, Robotics: The Algorithmic Perspective: 1998 Workshop on the Algorithmic Foundations of Robotics, pages 155–168. A. K. Peters, Wellesley, MA, 1998.

    Google Scholar 

  2. N.M. Amato, K.A. Dill, and G. Song. Using motion planning to map protein folding landscapes and analyze folding kinetics of known native structures. In Proc. ACM Int. Conf. on Computational Biology (RECOMB), pages 2–11, 2002.

    Google Scholar 

  3. M.S. Apaydin, D.L. Brutlag, C. Guestrin, D. Hsu, and J.C. Latombe. Stochastic roadmap simulation: An efficient representation and algorithm for analyzing molecular motion. In Proc. ACM Int. Conf. on Computational Biology (RECOMB), pages 12–21, 2002.

    Google Scholar 

  4. M.S. Apaydin, C.E. Guestrin, Chris Varma, D.L. Brutlag, and J.C. Latombe. Stochastic roadmap simulation for the study of ligand-protein interactions. Bioinformatics, 18(supplement 2 ): 18S - 26S, 2002.

    Google Scholar 

  5. M.S. Apaydin, A.P. Singh, D.L. Brutlag, and J.C. Latombe. Capturing molecular energy landscapes with probabilistic conformational roadmaps. In Proc. IEEE Int. Conf. on Robotics & Automation, pages 932–939, 2001.

    Google Scholar 

  6. J. Barraquand and J.C. Latombe. Robot motion planning: A distributed representation approach. Int. J. Robotics Research, 10 (6): 628–649, 1991.

    Article  Google Scholar 

  7. F.C. Bernstein et al. The protein data bank: A computer-based archival file for macro-molecular structure. J. Mol. Biol., 112 (3): 535–542, 1977.

    Article  Google Scholar 

  8. R. Bohlin and L.E. Kavraki. Path planning using lazy PRM. In Proc. IEEE Int. Conf. on Robotics & Automation, pages 521–528, 2000.

    Google Scholar 

  9. V. Boor, M.H. Overmars, and F. van der Stappen. The Gaussian sampling strategy for probabilistic roadmap planners. In Proc. IEEE Int. Conf. on Robotics & Automation, pages 1018–1023, 1999.

    Google Scholar 

  10. C.J. Camacho and S. Vajda. Protein docking along smooth association pathways. Proc. Nat. Acad. Sei. USA, 98 (19): 10636–10641, 2001.

    Article  Google Scholar 

  11. R. Du, V. Pande, A.Y. Grosberg, T. Tanaka, and E. Shakhnovich. On the transition coordinate for protein folding. J. Chem. Phys., 108 (l): 334–350, 1998.

    Article  Google Scholar 

  12. J.M. Haile. Molecular Dynamics Simulation: Elementary Methods. John Wiley & Sons, New York, 1992.

    Google Scholar 

  13. D. Hsu, J.C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. Int. J. Computational Geometry & Applications, 9 (4 & 5): 495–512, 1999.

    Article  MathSciNet  Google Scholar 

  14. IBM Blue Gene Team. Blue gene: A vision for protein science using a petaflop supercomputer. IBM Systems Journal, 40 (2): 310–327, 2001.

    Article  Google Scholar 

  15. M.H. Kalos and P.A. Whitlock. Monte Carlo Methods, volume 1. John Wiley & Son, New York, 1986.

    Book  MATH  Google Scholar 

  16. L.E. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmars. Probabilistic roadmaps for path planning in high-dimensional configuration space. IEEE Trans, on Robotics & Automation, 12 (4): 566–580, 1996.

    Article  Google Scholar 

  17. S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning. Int. J. Robotics Research, 20 (5): 278–400, 2001.

    Article  Google Scholar 

  18. A.R. Leach. Molecular Modelling: Principles and Applications. Longman, Essex, England, 1996.

    Google Scholar 

  19. M.Cieplak, M.Henkel, J. Karbowski, and J.R.Banavar. Master equation approach to protein folding and kinetic traps. Phys. Rev. Let., 80: 3654, 1998.

    Article  Google Scholar 

  20. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equations of state calculations by fast computing machines. J. Chem. Phys., 21: 1087–1092, 1953.

    Article  Google Scholar 

  21. G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, and A.J. Olson. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 19 (14): 1639–1662, 1998.

    Article  Google Scholar 

  22. V.S. Pande et al. Atomistic protein folding simulations on the hundreds of microsecond timescale using worldwide distributed computing. Biopolymers, to appear.

    Google Scholar 

  23. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS, New York, 1996.

    MATH  Google Scholar 

  24. G. Sanchez and J.C. Latombe. On delaying collision checking in PRM planning— application to multi-robot coordination. Int. J. Robotics Research, 21 (1): 5–26, 2002.

    Article  Google Scholar 

  25. T. Siméon, J.P. Laumond, and F. Lamiraux. Move3D: A generic platform for motion planning. In Proc. IEEE Int. Symp. on Assembly & Task Planning, 2001.

    Google Scholar 

  26. A.P. Singh and D.L. Brutlag. Hierarchical protein structure superposition using both secondary structure and atomic representations. In Proc. Int. Conf. on Intelligent Systems for Molecular Biology, pages 284–293, 1997.

    Google Scholar 

  27. A.P. Singh, J.C. Latombe, and D.L. Brutlag. A motion planning approach to flexible ligand binding. In Proc. Int. Conf. on Intelligent Systems for Molecular Biology, pages 252–261, 1999.

    Google Scholar 

  28. K. Smith and B. Honig. Evaluation of the conformational free energies of loops in proteins. Proteins: Structure, Function, and Genetics, 18: 119–132, 1994.

    Article  Google Scholar 

  29. G. Song and N.M. Amato. Using motion planning to study protein folding pathways. In Proc. ACM Int. Conf. on Computational Biology (RECOMB), pages 287–296, 2001.

    Google Scholar 

  30. S. Sun, PD. Thomas, and K.A. Dill. A simple protein folding algorithm using a binary code and secondary structure constraints. Protein Engineering, 8: 769–778, 1995.

    Article  Google Scholar 

  31. H. Taylor and S. Karlin. An Introduction to Stochastic Modeling. Academic Press, New York, 1994.

    MATH  Google Scholar 

  32. C. Varma. Computing protein-ligand interaction kinetics using Markov methods. Master’s thesis, Dept. of Computer Science, Stanford University, Stanford, CA, 2002.

    Google Scholar 

  33. J. Wang, P.A. Kollman, and I.D. Kuntz. Flexible ligand docking: A multiple strategy approach. Proteins: Structure, Function, and Genetics, 36 (1): 1–19, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Apaydın, M.S., Brutlag, D.L., Guestrin, C., Hsu, D., Latombe, JC. (2004). Stochastic Conformational Roadmaps for Computing Ensemble Properties of Molecular Motion. In: Boissonnat, JD., Burdick, J., Goldberg, K., Hutchinson, S. (eds) Algorithmic Foundations of Robotics V. Springer Tracts in Advanced Robotics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45058-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45058-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07341-0

  • Online ISBN: 978-3-540-45058-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics