Skip to main content

Distributed Motion Planning for 3D Modular Robots with Unit-Compressible Modules

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 7))

Abstract

Self-reconfigurable robots are versatile systems consisting of large numbers of independent modules. Effective use of these systems requires parallel actuation and planning, both for efficiency and independence from a central controller. This paper presents the PacMan algorithm, a technique for distributed actuation and planning. This algorithm works on systems with two- or three-dimensional unit-compressible modules. We give a simplified version of the algorithm along with extensions that handle a larger class of parallel actuation. For both algorithms, we present correctness analysis that show the classes of reconfigurations that can be guaranteed to be achieved. For the extensions, we give proofs of parallel actuation capability that describe how several modules can move simultaneously without synchronization while retaining correctness. We have successfully instantiated the basic algorithm onto the Crystal, a self-reconfigurable robot system, and present hardware experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Butler, S. Byrnes, and D. Rus. Distributed motion planning for modular robots with unit-compressible modules. In Proc. of the InVl Conf. on Intelligent Robots and Systems, 2001.

    Google Scholar 

  2. Z. Butler, R. Fitch, and D. Rus. Experiments in distributed locomotion with a unit-compressible robot. In Proc. of the InVl Conf. on Intelligent Robots and Systems, pages 2813–8, 2002.

    Google Scholar 

  3. T. Fukuda and Y. Kawakuchi. Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator. In Proc. of IEEE ICRA, pages 662–7, 1990.

    Google Scholar 

  4. K. Kotay and D. Rus. Locomotion versatility through self-reconfiguration. Robotics and Autonomous Systems, 26: 217–32, 1999.

    Article  Google Scholar 

  5. K. Kotay and D. Rus. Algorithms for self-reconfiguring molecule motion planning. In Proc. of the InVl Conf. on Intelligent Robots and Systems, 2000.

    Google Scholar 

  6. W. H. Lee and A. Sanderson. Dynamic analysis and distributed control of the tetrabot modular reconfigurable robot system. Autonomous Robots, 10 (1): 67–82, 2001.

    Article  MATH  Google Scholar 

  7. S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji. A 3-D self-reconfigurable structure. In Proc. of IEEE ICRA, pages 432–9, May 1998.

    Google Scholar 

  8. S. Murata, E. Yoshida, K. Tomita, H. Kurokawa, A. Kamimura, and S. Kokaji. Hardware design of modular robotic system. In Proc. of the InVl Conf. on Intelligent Robots and Systems, pages 2210–7, 2000.

    Google Scholar 

  9. A. Nguyen, L. Guibas, and M. Yim. Controlled module density helps reconfiguration planning. In Algorithmic and Computational Robotics: Proceedings of WAFR 2000, pages 23–35, 2000.

    Google Scholar 

  10. A. Pamecha, C-J. Chiang, D. Stein, and G. Chirikjian. Design and implementation of metamorphic robots. In Proc. of the 1996 ASME Design Engineering Technical Conf. and Computers in Engineering Conf., 1996.

    Google Scholar 

  11. A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian. Useful metrics for modular robot motion planning. IEEE Trans, on Robotics and Automation, 13 (4): 531–45, 1997.

    Article  Google Scholar 

  12. D. Rus and M. Vona. Crystalline robots: Self-reconfiguration with unit-compressible modules. Autonomous Robots, 10 (l): 107–24, 2001.

    Article  MATH  Google Scholar 

  13. J. Suh, S. Homans, and M. Yim. Telecubes: Mechanical design of a module for self-reconfigurable robotics. In Proc. of IEEE ICRA, 2002.

    Google Scholar 

  14. K. Tomita, S. Murata, H. Kurokawa, E. Yoshida, and S. Kokaji. Self-assembly and self-repair method for a distributed mechanical system. IEEE Trans, on Robotics and Automation, 15 (6): 1035–45, Dec. 1999.

    Article  Google Scholar 

  15. S. Vassilvitskii, M. Yim, and J. Suh. A complete, local and parallel reconfiguration algorithm for cube style modular robots. In Proc. of IEEE ICRA, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Butler, Z., Rus, D. (2004). Distributed Motion Planning for 3D Modular Robots with Unit-Compressible Modules. In: Boissonnat, JD., Burdick, J., Goldberg, K., Hutchinson, S. (eds) Algorithmic Foundations of Robotics V. Springer Tracts in Advanced Robotics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45058-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45058-0_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07341-0

  • Online ISBN: 978-3-540-45058-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics