Skip to main content

Motion Planning for Knot Untangling

  • Chapter
Algorithmic Foundations of Robotics V

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 7))

Abstract

This paper investigates the application of motion planning techniques to the untangling of mathematical knots. Knot untangling can be viewed as a high-dimensional planning problem in reparameterizable configuration spaces. In the past, simulated annealing and other energy minimization methods have been used to find knot untangling paths. We develop a probabilistic planner that is capable of untangling knots described by over four hundred variables and known difficult benchmarks in this area more quickly than has been achieved with minimization in the literature. The use of motion planning techniques was critical for the untangling. Our planner defines local goals and makes combined use of energy minimization and randomized tree-based planning. We also show how to produce candidates with minimal number of segments for a given knot. Finally, we discuss some possible applications of our untangling planner in computational topology, in the study of DNA rings and protein folding and for planning with flexible robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Agol, J. Hass, and W. Thurston. The computational complexity of knot genus and spanning area, (preprint.).

    Google Scholar 

  2. C. N. Anerizis. The Mystery of Knots - Computer Programming for Knot Tabulation. Series on Knots and Everything. World Scientifical Publishing Co. Pte. Ltd., 1999.

    Google Scholar 

  3. M. Apaydin, D. Brutlag, C. Guestrin, D. Hsu, and J. Latombe. Stochastic roadmap simulation: An efficient representation and algorithm for analyzing molecular motion. In International Conference on Computational Molecular Biology (RECOMB), April 2002.

    Google Scholar 

  4. M. Apaydin, A. Singh, D. Brutlag, and J. Latombe. Capturing molecular energy landscapes with probabilistic conformal roadmaps. In IEEE International Conference on Robotics and Automation (ICRA), May 2001.

    Google Scholar 

  5. O. Bayazit, J.-M. Lien, and N. Amato. Probabilistic roadmap motion planning for deformable objects. In IEEE International Conference on Robotics and Automation, 2002.

    Google Scholar 

  6. M. Bern, D. Eppstein, and al. Emerging challenges in computational topology, 1999.

    Google Scholar 

  7. J. S. Birman, P. Boldi, M. Rampichini, and S. Vigna. Towards an implementation of the b-h algorithm for recognizing the unknot. In KNOTS-2000, 2000.

    Google Scholar 

  8. Z. Butler, K. Kotay, D. Rus, and K. Tomita. Cellular automata for decentralized control of self-reconfigurable robots. In IEEE International Conference on Robotics and Automation, 2001.

    Google Scholar 

  9. X. Dai and Y. Diao. The minimum of knot energy functions. Journal of Knot Theory and its Ramifications, 9 (6): 713–724, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Deibler, S. Rahmati, and E. Zechiedrich. Topoisomerase iv, alone, unknots dna in escherichia coli. Genes and Development, 15: 748–761, 2001.

    Article  Google Scholar 

  11. Y. Diao, C. Ernst, and J. Rensburg. In search of a good polygonal knot energy. Journal of Knot Theory and its Ramifications, 6(5):633–657, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Grzeszczuk, M. Huang, and L. Kauffman. Untangling knots by stochastic energy optimization. IEEE Visualization, pages 279–286, 1996.

    Google Scholar 

  13. R. Grzeszczuk, M. Huang, and L. Kauffman. Physically-based stochastic simplification of mathematical knots. IEEE Transactions on Visualization and Computer Graphics, 3 (3): 262–278, 1997.

    Article  Google Scholar 

  14. J. Hass and J. Lagarias. The number of reidemeister moves needed for unknotting. (preprint.).

    Google Scholar 

  15. J. Hass, J. C. Lagarias, and N. Pippenger. The computational complexity of knot and link problems. In IEEE Symposium on Foundations of Computer Science, pages 172–181, 1997.

    Google Scholar 

  16. J. Hoste and M. Thistlethwaite. The first 1,701,936 knots. Math. Intelligencer, 20 (4): 33–48, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Hsu. Randomized Single-Query Motion Planning In Expansive Spaces. PhD thesis, Department of Computer Science, Stanford University, 2000.

    Google Scholar 

  18. D. Hsu, R. Kindel, J. Latombe, and S. Rock. Control-based randomized motion planning for dynamic environments. In Algorithmic and Computational Robotics: New Directions: The Fourth International Workshop on the Algorithmic Foundations of Robotics, pages 247–264, 2001.

    Google Scholar 

  19. D. Hsu, J. Latombe, and R. Motwani. Path planning in expansive spaces. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 2719–2726, 1997.

    Chapter  Google Scholar 

  20. F. Jaeger, D. L. Vertigan, and D. Welsh. On the computational complexity of the jones and tutte polynomials. In Math. Proc. Camb. Phil. Soc108, pages 35–53, 1990.

    Google Scholar 

  21. R. Jenkins. A dynamic approach to calculating the homfly polynomial for directed knots and links. Master’s thesis, Carnegie Mellon University, 1989.

    Google Scholar 

  22. L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. Transaction on Robotics and Automation, 12 (4): 566–580, June 1996.

    Article  Google Scholar 

  23. J. J. Kuffner and S. M. LaValle. Randomized kinodynamic planning. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 473–479, 1999.

    Google Scholar 

  24. J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-query path planning. In Proc. IEEE Int’l Conf. on Robotics and Automation, 2000.

    Google Scholar 

  25. J. J. Kuffner and S. M. LaValle. Randomized kinodynamic planning. International Journal of Robotics Research, 20 (5): 378–400, May 2001.

    Article  Google Scholar 

  26. J. J. Kuffner and S. M. LaValle. Rapidly exploring random trees: Progress and prospects. In Algorithmic and Computational Robotics: New Directions: The Fourth International Workshop on the Algorithmic Foundations of Robotics, pages 293–308, 2001.

    Google Scholar 

  27. A. Ladd and L. Kavraki. A measure theoretic analysis of prm. In IEEE International Conference on Robotics and Automation, May 2002.

    Google Scholar 

  28. F. Lamiraux and L. Kavraki. Planning paths for elastic objects. International Journal of Robotics Research, 20 (3), 2001.

    Google Scholar 

  29. W. Lickorish. An Introduction to Knot Theory. Springer, 1997.

    Google Scholar 

  30. T. Ligocki and J. A. Sethian. Recognizing knots using simulated annealing. Journal of Knot Theory and Its Ramifications, 3 (4): 477–495, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Phillips, A. Ladd, and L. Kavraki. Simulated knot tying. In IEEE International Conference on Robotics and Automation, May 2002.

    Google Scholar 

  32. L. Postow, B. Peter, and N. Cozzarelli. Knot what we thought before: The twisted story of replication. BioEssays, 21: 805–808, 1999.

    Google Scholar 

  33. G. Sanchez and J.-C. Latombe. A single-query bi-directional probabilistic roadmap planner with lazy collision checking. In ISRR, 2001.

    Google Scholar 

  34. R. Scharein. Interactive Topological Drawing. PhD thesis, University of British Columbia, 1988.

    Google Scholar 

  35. J. Simon. Energy functions for polygonal knots. J. Knot Theory and its Ramif., 3: 299–320, 1994.

    Article  MATH  Google Scholar 

  36. G. Song and N. Amato. Using motion planning to study protein folding pathways. In International Conference on Computational Molecular Biology (RE- COMB), pages 287–296, April 2001.

    Google Scholar 

  37. M. Teodoro, G. Phillips, and L. Kavraki. A dimensionality reduction approach to modeling protein flexibility. In International Conference on Computational Molecular Biology (RECOMB), April 2002.

    Google Scholar 

  38. S. Vassilvitskii, J. Suh, and M. Yim. A complete, local and parallel reconfiguration algorithm for cube style modular robots. In IEEE International Conference on Robotics and Automation (ICRA), May 2002.

    Google Scholar 

  39. J. Walter, B. Tsai, and N. Amato. Choosing good paths for fast distributed reconfiguration of hexagonal met amorphic robots. In IEEE International Conference on Robotics and Automation, 2002.

    Google Scholar 

  40. Y.-Q. Wu. Ming user manual, www.math.uiowa.edu/wu/ming/ming.pdf, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ladd, A.M., Kavraki, L.E. (2004). Motion Planning for Knot Untangling. In: Boissonnat, JD., Burdick, J., Goldberg, K., Hutchinson, S. (eds) Algorithmic Foundations of Robotics V. Springer Tracts in Advanced Robotics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45058-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45058-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07341-0

  • Online ISBN: 978-3-540-45058-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics