Skip to main content

Reconstructing the Shape and Motion of Unknown Objects with Active Tactile Sensors

  • Chapter
Algorithmic Foundations of Robotics V

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 7))

Abstract

We present a method to simultaneously reconstruct the shape and motion of an unknown smooth convex object. The object is manipulated by planar palms covered with tactile elements. The shape and dynamics of the object can be expressed as a function of the sensor values and the motion of the palms. We present a brief review of previous results for the planar case. In this paper we show that the 3D case is fundamentally different from the planar case, due to increased tangent dimensionality. The main contribution of this paper is a shape-dynamics analysis in 3D, and the synthesis of shape approximation methods via reconstructed contact point curves.

This work was supported in part by the National Science Foundation under grant IIS-9820180. The research was performed while the first author was with Carnegie Mellon University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, P. K. and Michelman, P. (1990). Acquisition and interpretation of 3-D sensor data from touch. IEEE Trans, on Robotics and Automation, 6 (4): 397–404.

    Article  Google Scholar 

  2. Allen, P. K. and Roberts, K. S. (1989). Haptic object recognition using a multi-fingered dextrous hand. In Proc. 1989 IEEE Intl. Conf. on Robotics and Automation, pp. 342–347, Scottsdale, AZ.

    Chapter  Google Scholar 

  3. Bicchi, A., Marigo, A., and Prattichizzo, D. (1999). Dexterity through rolling: Manipulation of unknown objects. In Proc. 1999 IEEE Intl. Conf. on Robotics and Automation, pp. 1583–1588, Detroit, Michigan.

    Google Scholar 

  4. Charlebois, M., Gupta, K., and Payandeh, S. (1996). Curvature based shape estimation using tactile sensing. In Proc. 1996 IEEE Intl. Conf. on Robotics and Automation, pp. 3502–3507.

    Google Scholar 

  5. Charlebois, M., Gupta, K., and Payandeh, S. (1997). Shape description of general, curved surfaces using tactile sensing and surface normal information. In Proc. 1997 IEEE Intl. Conf. on Robotics and Automation, pp. 2819–2824.

    Google Scholar 

  6. Chen, N., Rink, R., and Zhang, H. (1996). Local object shape from tactile sensing. In Proc. 1996 IEEE Intl. Conf. on Robotics and Automation, pp. 3496–3501.

    Google Scholar 

  7. Chou, J. C. (1992). Quaternion kinematic and dynamic differential equations. IEEE Trans, on Robotics and Automation, 8 (l): 53–64.

    Article  Google Scholar 

  8. Edelsbrunner, H. and Mücke, E. P. (1994). Three-dimensional alpha shapes. ACM Transactions on Graphics (TOG), 13 (l): 43–72.

    Article  MATH  Google Scholar 

  9. Erdmann, M. A. (1999). Shape recovery from passive locally dense tactile data. In Robotics: The Algorithmic Perspective. A.K. Peters.

    Google Scholar 

  10. Fearing, R. S. (1990). Tactile sensing for shape interpretation. In Dexterous Robot Hands, chapter 10, pp. 209–238. Springer Verlag, Berlin; Heidelberg; New York.

    Google Scholar 

  11. Goldberg, K. Y. and Bajcsy, R. (1984). Active touch and robot perception. Cognition and Brain Theory, 7 (2): 199–214.

    Google Scholar 

  12. Hastie, T. and Stuetzle, W. (1989). Principal curves. Journal of the American Statistical Association, 84 (406): 502–516.

    Article  MATH  MathSciNet  Google Scholar 

  13. Kaneko, M. and Tsuji, T. (2001). Pulling motion based tactile sensing. In Algorithmic and Computational Robotics: New Directions, pp. 157–167. A. K. Peters.

    Google Scholar 

  14. LeBlanc, M. and Tibshirani, R. (1994). Adaptive principal surfaces. Journal of the American Statistical Association, 89 (425): 53–64.

    Article  MATH  Google Scholar 

  15. Liu, F. and Hasegawa, T. (2001). Reconstruction of curved surfaces using active tactile sensing and surface normal information. In Proc. 2001 IEEE Intl. Conf on Robotics and Automation, pp. 4029–4034.

    Google Scholar 

  16. Marigo, A., Chitour, Y., and Bicchi, A. (1997). Manipulation of polyhedral parts by rolling. In Proc. 1997 IEEE Intl. Conf. on Robotics and Automation, pp. 2992–2997.

    Google Scholar 

  17. Moll, M. (2002). Shape Reconstruction Using Active Tactile Sensors. PhD thesis, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA.

    Google Scholar 

  18. Moll, M. and Erdmann, M. A. (2001). Reconstructing shape from motion using tactile sensors. In Proc. 2001 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp. 691–700, Maui, HI.

    Google Scholar 

  19. Moll, M. and Erdmann, M. A. (2002). Dynamic shape reconstruction using tactile sensors. In Proc. 2002 IEEE Intl. Conf. on Robotics and Automation, pp. 1636–1641.

    Google Scholar 

  20. Montana, D. J. (1988). The kinematics of contact and grasp. Intl. J. of Robotics Research, 7 (3): 17–32.

    Article  Google Scholar 

  21. Okamura, A. M., Costa, M. A., Turner, M. L., Richard, C., and Cutkosky, M. R. (1999). Haptic surface exploration. In Experimental Robotics VI. Sydney, Australia. Springer Verlag.

    Google Scholar 

  22. Okamura, A. M. and Cutkosky, M. R. (2001). Feature detection for haptic exploration with robotic fingers. Intl. J. of Robotics Research, 20 (12): 925–938.

    Article  Google Scholar 

  23. Roberts, K. S. (1990). Robot active touch exploration: Constraints and strategies. In Proc. 1990 IEEE Intl. Conf. on Robotics and Automation, pp. 980–985.

    Chapter  Google Scholar 

  24. Spivak, M. (1999). A Comprehensive Introduction to Differential Geometry, volume 3. Publish or Perish, Houston, Texas, third edition.

    MATH  Google Scholar 

  25. Zimmer, G. (1994). State observation by on-line minimization. Intl. J. of Control, 60 (4): 595–606.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moll, M., Erdmann, M.A. (2004). Reconstructing the Shape and Motion of Unknown Objects with Active Tactile Sensors. In: Boissonnat, JD., Burdick, J., Goldberg, K., Hutchinson, S. (eds) Algorithmic Foundations of Robotics V. Springer Tracts in Advanced Robotics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45058-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45058-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07341-0

  • Online ISBN: 978-3-540-45058-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics