Advertisement

Exploiting the Ontological Qualities of Web Resources: Task-Driven Agents Structure Knowledge for Problem Solving

  • Louise Crow
  • Nigel Shadbolt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1860)

Abstract

There are structured and semi-structured sources of knowledge on the Web that present implicit or explicit ontologies of domains. Knowledge level models have a role to play in structuring and extracting useful and focused problem solving knowledge from these Web sources. The IMPS (Internet-based Multi-agent Problem Solving) architecture described here is an agent-based architecture driven by knowledge level models. It is designed to facilitate the retrieval, restructuring, integration and formalization of problem solving knowledge from the Web. This research draws on models of agency particularly suited to supporting the functionality required of a system like IMPS.

Keywords

Domain Knowledge Task Model Knowledge Source Domain Ontology Document Type Definition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schreiber, A.T., Akkermans, M., Anjewierden, A.A., de Hoog, R., Shadbolt, N.R., Van de Velde, W., Wielinga, B.J.: Knowledge Engineering and Management: The CommonKADS Methodology. MIT Press, Cambridge (2000)Google Scholar
  2. 2.
    Van de Velde, W.: Issues in Knowledge Level Modelling. In: David, J.M., Krivine, J.P., Simmons, R. (eds.) Second Generation Expert Systems. Springer, Heidelberg (1993)Google Scholar
  3. 3.
    van Heijst, G., Schreiber, A.T., Wielinga, B.J.: Using Explicit Ontologies for KBS Development. Int. J. Human-Computer Studies/Knowledge Acquisition 2(3), 183–292 (1997)Google Scholar
  4. 4.
    Fridman Noy, N., Hafner, C.: The State of the Art in Ontology Design: A Survey and Comparative Review. A.I. Magazine, 53–74 (1997)Google Scholar
  5. 5.
    Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  6. 6.
    Swartout, B., Patil, R., Knight, K., Russ, T.: Toward Distributed Use of Large-Scale Ontologies. In: Proc. of the Tenth KA for KBSs Workshop. SRDG Publications, Banff (1996)Google Scholar
  7. 7.
    Cycorp, Inc.: The Cycorp homepage (1996), http://www.cyc.com
  8. 8.
    Miller, G.: WordNet: An on-line lexical database. Int. J. Lexicography 3(4), 235–302 (1990)CrossRefGoogle Scholar
  9. 9.
    Beckwith, R., Miller, G.A.: Implementing a lexical network. Int. J. Lexicography 3(4), 302–312 (1990)CrossRefGoogle Scholar
  10. 10.
    Bray, T., Paoli, J., Sperberg-McQueen, C.M. (eds.): Extensible Markup Language (XML) 1.0. W3C Recommendation, February 10 (1998), http://www.w3c.org/TR/1998/REC-xml-19980210
  11. 11.
    Erdmann, M., Studer, R.: Ontologies as Conceptual Models for XML Documents. In: Proc. 12th Workshop on K.A for KBS. SRDG Publications, Banff (1999)Google Scholar
  12. 12.
    Schulz, S., Romacker, M., Faggioli, G., Hahn, U.: From Knowledge Import to Knowledge Finishing: Automatic Acquisition and Semi-Automatic Refinement of Medical Knowledge. In: Proc. 12th Workshop on K.A. for KBS. SRDG Publications, Banff (1999)Google Scholar
  13. 13.
    Chaudri, V.K., Farquhar, A., Fikes, R., Karp, P.D., Rice, J.P.: Open Knowledge Base Connectivity 2.0.2, Knowledge Systems Laboratory (1998)Google Scholar
  14. 14.
    Malone, T.W., Lai, K.-Y., Grant, K.R.: Agents for information sharing and coordination: A history and some reflections. In: Bradshaw, J. (ed.) Software agents, pp. 109–143. AAAI/MIT Press, Cambridge (1997)Google Scholar
  15. 15.
    Frost, H.R.: Documentation for the Java Agent Template, Version 0.3. Center for Design Research, Stanford University (1996), http://cdr.stanford.edu/ABE/documentation/index.html
  16. 16.
    Friedman-Hill, E.J.: Jess, The Java Expert System Shell, Technical Report, SAND98-8206 Sandia National Laboratories, Livermore (1998), http://herzberg.ca.sandia.gov/jess
  17. 17.
    Finin, T., Labrou, Y., Mayfield, J.: KQML as an Agent Communication Language. In: Bradshaw, J. (ed.) Software agents. AAAI/MIT Press, Cambridge (1997)Google Scholar
  18. 18.
    Genesereth, M.R., Fikes, R.E.: Knowledge Interchange Format Version 3.0 Reference Manual, Technical Report, Logic-92-1, Computer Science Department, Stanford University (1992)Google Scholar
  19. 19.
    Crow, L.R., Shadbolt, N.R.: Internet Agents for Knowledge Engineering. In: Proc. of the Eleventh Banff KA for KBSs Workshop. SRDG Publications, Banff (1998)Google Scholar
  20. 20.
    Fellbaum, C., Gross, D., Miller, K.: Adjectives in WordNet. (1993) (unpublished report)Google Scholar
  21. 21.
    Fellbaum, C.: English Verbs as a Semantic Net. Int. J. Lexicography 3(4), 278–301 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Louise Crow
    • 1
  • Nigel Shadbolt
    • 2
  1. 1.Artificial Intelligence Group, School of PsychologyUniversity of NottinghamNottinghamU.K.
  2. 2.Department of Electronics and Computer ScienceUniversity of SouthamptonSouthampton

Personalised recommendations