Lattice-Boltzmann Methods — A New Tool in CFD

  • D. Hänel
  • O. Filippova
Conference paper
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 78)


The paper summarizes recent developments of the authors on lattice-Boltzmann methods. Algorithmic extension are done for improving boundary formulations of different types and for local grid refinement. Wide spread applications show the performance of the lattice-Boltzmann concept, ranging from gas-particle flows to turbulent flows and combustion processes.


Coarse Grid Knudsen Number Lattice Boltzmann Method Grid Refinement Lattice Boltzmann Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [I]
    U. Frisch, B. Hasslacher and Y. Pomeau: Lattice Gas Automata for the Navier-Stokes Equations. Phys. Rev. Lett. 56, 1506 (1986).Google Scholar
  2. [2]
    G. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice—gas automata, Phys. Rev. Lett. 61, 2332 (1988).CrossRefGoogle Scholar
  3. [3]
    F. Higuera, S. Succi and R. Benzi, Lattice gas dynamics with enhanced collisions, Europhys. Lett. 9, 345 (1989).CrossRefGoogle Scholar
  4. [4]
    Y.H. Qian, D. d’Humieres and P. Lallemand, Lattice BGK models for Navier-Stokes equation, Europhys. Lett. 17 (6), 479 (1992).zbMATHCrossRefGoogle Scholar
  5. [5]
    R. Benzi, S. Succi and M. Vergassola, The Lattice Boltzmann equation: theory and applications, Physics Reports 222 (3), 145 (1992).CrossRefGoogle Scholar
  6. [6]
    Y.-H. Qian, S. Succi and S.Orszag, Recent advances in Lattice Boltzmann computing. Annual Reviews of Computational Physics III 195. World Scientific (1996).Google Scholar
  7. [7]
    S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech 30, 329 (1998).MathSciNetCrossRefGoogle Scholar
  8. [8]
    S. Chen, Z. Wang, X. Shan and G.D. Doolen, Lattice Boltzmann computational fluid dynamics in three dimensions, J. Stat. Phys. 68, 379 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    N. Satofuka, T. Nishioka, Numerical simulation of three-dimensional incompressible turbulent flows using Lattice Boltzmann method, in Lecture Notes in Physics, Springer, Proc. of 16th Int. Conf. on Num. Meth. in Fluid Dynamics, Arcachon, France, 415 (1998).Google Scholar
  10. [10]
    F.Nannelli and S. Succi, The Lattice Boltzmann equation on irregular lattices, J. Stat. Phys. 68, N3 /4, 401 (1992).Google Scholar
  11. [11]
    X. He, L.-S. Luo and M. Dembo, Some progress in Lattice Boltzmann method. Part 1. Nonuniform mesh grids, J. Comp. Phys. 129, 357 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    O. Filippova, D. Hänel, Lattice-Boltzmann simulation of gas-particle flow in filters, Computers & Fluids 26 (7), 697 (1997).zbMATHCrossRefGoogle Scholar
  13. [13]
    O. Filippova, D. Hänel, Boundary-fitting and local grid refinement for lattice-BGK models, Int. J. Mod. Phys. C 9, N 8, 1271 (1998).CrossRefGoogle Scholar
  14. [14]
    O. Filippova and D. Hänel, Grid refinement for lattice-BGK models, J. Comp. Phys. 147, 219 (1998).zbMATHCrossRefGoogle Scholar
  15. [15]
    O. Filippova, D. Hänel, A novel lattice-BGK approach for low Mach number combustion, J. Comp. Phys. 158, 139 (2000).zbMATHCrossRefGoogle Scholar
  16. [16]
    O. Filippova and D. Hänel, Acceleration of lattice BGK schemes with grid refinement, submitted to J. Comp. Phys. (1999).Google Scholar
  17. [17]
    Q. Zou, S. Hou, S. Chen and G. Doolen, An improved incompressible lattice Boltzmann model for time-independent flows, J. Stat. Phys. 81, 35 (1995).zbMATHCrossRefGoogle Scholar
  18. [18]
    X. He and L.-S. Luo, Lattice Boltzmann model for the incompressible Navier-Stokes equations, J. Stat. Phys. 88, 927 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    A.J.C.Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech., 271 285 (1994).Google Scholar
  20. [20]
    M. Schäfer and S. Turek, Benchmark computations of laminar flow around a cylinder, Notes in Numerical Fluid Mechanics, Vieweg Verlag, Braunschweig, 52, 547, (1996).Google Scholar
  21. [21]
    O. Filippova, S. Succi, F. Mazzocco, C Arrighetti, G. Bella and D. Hänel, Multiscale lattice Boltzmann schemes with turbulence modelling and their application to turboaxial machines, submitted in J. Comp. Phys. (2000).Google Scholar
  22. [22]
    S. Succi, G. Amati and R. Benzi, Challenges in Lattice Boltzmann computing, J. STAT. PHYS., 81, 5 (1995).zbMATHCrossRefGoogle Scholar
  23. [23]
    C. Teixeira, Incorporating turbulence models into the Lattice-Boltzmann method, Int1. Mod. Phys. C 9, N 8, 1159 (1998).MathSciNetCrossRefGoogle Scholar
  24. [24]
    R. M. Pinkerton, Calculated and measured pressure distributions over the midspan sections of the NACA 4412 airfoil, NACA Rept. N. 563, 1936.Google Scholar
  25. [25]
    O. Filippova and D. Hänel, Flow prediction by Lattice-Boltzmann methods, to appear in Lecture Notes in Physics, Springer, Proceedings of 1st Int. Conf. on Comp. Fluid Dynamics, Kyoto, Japan (2000).Google Scholar
  26. [26]
    G.J. Sivashinsky, Hydrodynamics theory of flame propagation in an enclosed volume, Acta Astronaut. 6, 631 (1979).zbMATHCrossRefGoogle Scholar
  27. [27]
    G.R. Rehm and H.R. Baum, The equations of motion for thermally driven flows, J. Res. Natl. Bur. Standards 83 (3), 297 (1978).Google Scholar
  28. [28]
    A.G. Tomboulies, J.C.Y. Lee and S.A. Orszag, Numerical simulation of low Mach number reactive flows, J. Sci. Comput. 12 (2), 139 (1997).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • D. Hänel
    • 1
  • O. Filippova
    • 1
  1. 1.Institute of Combustion and GasdynamicsUniversity of DuisburgDuisburgGermany

Personalised recommendations