Skip to main content

Lattice-Boltzmann Methods — A New Tool in CFD

  • Conference paper

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NNFM,volume 78))

Summary

The paper summarizes recent developments of the authors on lattice-Boltzmann methods. Algorithmic extension are done for improving boundary formulations of different types and for local grid refinement. Wide spread applications show the performance of the lattice-Boltzmann concept, ranging from gas-particle flows to turbulent flows and combustion processes.

This work has been supported by the German Research Society (DFG).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Frisch, B. Hasslacher and Y. Pomeau: Lattice Gas Automata for the Navier-Stokes Equations. Phys. Rev. Lett. 56, 1506 (1986).

    Google Scholar 

  2. G. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice—gas automata, Phys. Rev. Lett. 61, 2332 (1988).

    Article  Google Scholar 

  3. F. Higuera, S. Succi and R. Benzi, Lattice gas dynamics with enhanced collisions, Europhys. Lett. 9, 345 (1989).

    Article  Google Scholar 

  4. Y.H. Qian, D. d’Humieres and P. Lallemand, Lattice BGK models for Navier-Stokes equation, Europhys. Lett. 17 (6), 479 (1992).

    Article  MATH  Google Scholar 

  5. R. Benzi, S. Succi and M. Vergassola, The Lattice Boltzmann equation: theory and applications, Physics Reports 222 (3), 145 (1992).

    Article  Google Scholar 

  6. Y.-H. Qian, S. Succi and S.Orszag, Recent advances in Lattice Boltzmann computing. Annual Reviews of Computational Physics III 195. World Scientific (1996).

    Google Scholar 

  7. S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech 30, 329 (1998).

    Article  MathSciNet  Google Scholar 

  8. S. Chen, Z. Wang, X. Shan and G.D. Doolen, Lattice Boltzmann computational fluid dynamics in three dimensions, J. Stat. Phys. 68, 379 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Satofuka, T. Nishioka, Numerical simulation of three-dimensional incompressible turbulent flows using Lattice Boltzmann method, in Lecture Notes in Physics, Springer, Proc. of 16th Int. Conf. on Num. Meth. in Fluid Dynamics, Arcachon, France, 415 (1998).

    Google Scholar 

  10. F.Nannelli and S. Succi, The Lattice Boltzmann equation on irregular lattices, J. Stat. Phys. 68, N3 /4, 401 (1992).

    Google Scholar 

  11. X. He, L.-S. Luo and M. Dembo, Some progress in Lattice Boltzmann method. Part 1. Nonuniform mesh grids, J. Comp. Phys. 129, 357 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. O. Filippova, D. Hänel, Lattice-Boltzmann simulation of gas-particle flow in filters, Computers & Fluids 26 (7), 697 (1997).

    Article  MATH  Google Scholar 

  13. O. Filippova, D. Hänel, Boundary-fitting and local grid refinement for lattice-BGK models, Int. J. Mod. Phys. C 9, N 8, 1271 (1998).

    Article  Google Scholar 

  14. O. Filippova and D. Hänel, Grid refinement for lattice-BGK models, J. Comp. Phys. 147, 219 (1998).

    Article  MATH  Google Scholar 

  15. O. Filippova, D. Hänel, A novel lattice-BGK approach for low Mach number combustion, J. Comp. Phys. 158, 139 (2000).

    Article  MATH  Google Scholar 

  16. O. Filippova and D. Hänel, Acceleration of lattice BGK schemes with grid refinement, submitted to J. Comp. Phys. (1999).

    Google Scholar 

  17. Q. Zou, S. Hou, S. Chen and G. Doolen, An improved incompressible lattice Boltzmann model for time-independent flows, J. Stat. Phys. 81, 35 (1995).

    Article  MATH  Google Scholar 

  18. X. He and L.-S. Luo, Lattice Boltzmann model for the incompressible Navier-Stokes equations, J. Stat. Phys. 88, 927 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  19. A.J.C.Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech., 271 285 (1994).

    Google Scholar 

  20. M. Schäfer and S. Turek, Benchmark computations of laminar flow around a cylinder, Notes in Numerical Fluid Mechanics, Vieweg Verlag, Braunschweig, 52, 547, (1996).

    Google Scholar 

  21. O. Filippova, S. Succi, F. Mazzocco, C Arrighetti, G. Bella and D. Hänel, Multiscale lattice Boltzmann schemes with turbulence modelling and their application to turboaxial machines, submitted in J. Comp. Phys. (2000).

    Google Scholar 

  22. S. Succi, G. Amati and R. Benzi, Challenges in Lattice Boltzmann computing, J. STAT. PHYS., 81, 5 (1995).

    Article  MATH  Google Scholar 

  23. C. Teixeira, Incorporating turbulence models into the Lattice-Boltzmann method, Int1. Mod. Phys. C 9, N 8, 1159 (1998).

    Article  MathSciNet  Google Scholar 

  24. R. M. Pinkerton, Calculated and measured pressure distributions over the midspan sections of the NACA 4412 airfoil, NACA Rept. N. 563, 1936.

    Google Scholar 

  25. O. Filippova and D. Hänel, Flow prediction by Lattice-Boltzmann methods, to appear in Lecture Notes in Physics, Springer, Proceedings of 1st Int. Conf. on Comp. Fluid Dynamics, Kyoto, Japan (2000).

    Google Scholar 

  26. G.J. Sivashinsky, Hydrodynamics theory of flame propagation in an enclosed volume, Acta Astronaut. 6, 631 (1979).

    Article  MATH  Google Scholar 

  27. G.R. Rehm and H.R. Baum, The equations of motion for thermally driven flows, J. Res. Natl. Bur. Standards 83 (3), 297 (1978).

    Google Scholar 

  28. A.G. Tomboulies, J.C.Y. Lee and S.A. Orszag, Numerical simulation of low Mach number reactive flows, J. Sci. Comput. 12 (2), 139 (1997).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hänel, D., Filippova, O. (2001). Lattice-Boltzmann Methods — A New Tool in CFD. In: Computational Fluid Dynamics for the 21st Century. Notes on Numerical Fluid Mechanics (NNFM), vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44959-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44959-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07558-2

  • Online ISBN: 978-3-540-44959-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics