Residual-Based Compactness versus Directionality for High-Order Compressible Flow Calculations

  • Alain Lerat
  • Christophe Corre
  • Grégoire Hanss
Conference paper
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 78)


A comparison is made of two approaches for constructing high-order accurate schemes: one is Directional Non Compact (DNC) and the other is Residual-Based Compact (RBC). Both methods are simple and tuning-parameter free. Real accuracy and computational efficiency are discussed for various 2-D hyperbolic problems including compressible flows with shocks. The DNC and RBC schemes produce high-order results, but the RBC scheme proves to be much better for shock capturing capabilities and computational efficiency.


Mach Number Compressible Flow Lift Coefficient Transonic Flow Numerical Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Harten A., Engquist B., Osher S. and Chakravarthy S., Uniformly high-order accurate essentially non-oscillatory schemes, III, J. Comput. Phys., 71, pp. 231–303 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Lele S.K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, pp. 16–42 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Yee H.C., Sandham N.D. and Djomehri M.J., Low-dissipative high-order shock capturing methods using characteristic-based filters, J. Comput. Phys., 150, pp. 199–238 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Lerat A. and Corre C., Residual-based compact schemes for multidimensional hyperbolic systems of conservation laws, Colloquium “State of the Art in CFD”, Marseille, France, September 1999, to be published in Comp. and Fluids. Google Scholar
  5. [5]
    Lerat A. and Corre C., A compact third-order accurate scheme using a first-order dissipation for the compressible Navier-Stokes equations, submitted to J. Comp. Phys.. Google Scholar
  6. [6]
    Lerat A. and Rezgui A., Schémas dissipatifs précis à l’ordre trois pour les systèmes hyperboliques, C.R. Acad. Sci., Paris, 323, II b, pp. 397–403 (1996).Google Scholar
  7. [7]
    Roe P.L., Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43, pp. 357–372 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Lerat A., Propriété d’homogénéité et décomposition des flux en dynamique des gaz, Journal de Mécanique théorique et appliquée, 2, pp. 185–213 (1983).MathSciNetzbMATHGoogle Scholar
  9. [9]
    Van Leer B., Upwind-difference methods for aerodynamic problems governed by the Euler equations, Lect. in Appl. Math.,vol. 22, pp. 327–336 (1985).Google Scholar
  10. [10]
    Huang Y. and Lerat A., Second-order upwinding through a characteristic time-step matrix for compressible flow calculations, J. Comput. Phys., 142, pp. 445–472 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Harten A., On a class of high resolution total-variation stable finite-difference schemes, SIAM J. Numer. Anal., vol. 21, pp. 1–23 (1984).MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Lerat A., Corre C. and Hanss G., Efficient High-order Schemes on Non-uniform Meshes for Multi-D Compressible Flows, Frontiers of CFD - 2000,D. Caughey and M. Hafez Eds, World Scientific, to appear.Google Scholar
  13. [13]
    Dervieux A., Van Leer B., Periaux J. and Rizzi A., Numerical simulation of compressible Euler flows, GAMM Workshop, Notes on Numerical Fluid Mechanics, vol. 26 (1989).Google Scholar
  14. [14]
    Lerat A. and Sidès J., Efficient solution of the steady Euler equations with a centered implicit method, Numerical Methods for Fluid Dynamics 3, ed. by K.W.Morton and M.J. Baines, Clarendon Press Oxford, 65 (1988).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Alain Lerat
    • 1
  • Christophe Corre
    • 1
  • Grégoire Hanss
    • 1
  1. 1.SINUMEF Laboratory, ENSAMParisFrance

Personalised recommendations