Numerical Simulations of the Coupling Process of Compressible Vortices

  • F. Grasso
  • S. Pirozzoli
Conference paper
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 78)


In the present paper the dynamics of the coupling process of compressible vortex pairs is analyzed by means of extensive numerical simulations. The objective of the study is to determine the influence both of the initial vortex structure and of the compressibility. Different initial vortex structures have been considered and their influence on the vorticity dynamics has been assessed. The numerical simulations show that free vortex evolution produces vortex dipoles whose structure depends upon the initial vortex structure and on the vortex Mach number. In the presence of shock — vortex pair interaction the coupling process obeys a either a two- or three- stage mechanism dependending upon the shock strength, and nonlinear couples are formed.


Vortex Structure Vortex Pair Coupling Process Core Radius Vorticity Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Grasso and S. Pirozzoli, “Simulations and Analysis of the Coupling Process of Compressible Vortex Pairs: Free Evolution and Shock Induced Coupling”, Phys. Fluids, to appear (2001).Google Scholar
  2. [2]
    G. K. Batchelor, “An Introduction to Fluid Dynamics”, Cambridge University Press, Cambridge (1967).zbMATHGoogle Scholar
  3. [3]
    Y. Couder and C. Basdevant, “Experimental and numerical study of vortex couples in two-dimensional flows”, J. Fluid Mech. 173, 225 (1986).CrossRefGoogle Scholar
  4. [4]
    J. B. Flór and G. J. F. van Heijst, “An experimental study of dipolar vortex structures in a stratified fluid”, J. Fluid Mech. 279, 101 (1994).CrossRefGoogle Scholar
  5. [5]
    F. Grasso and S. Pirozzoli, “Shock wave - thermal inhomogeneity interactions: analysis and numerical simulations of sound generation”, Phys. Fluids 12, 205 (2000).zbMATHCrossRefGoogle Scholar
  6. [6]
    F. Grasso and S. Pirozzoli, “Shock Wave - Vortex Interactions: Shock And Vortex Deformations, And Sound Production”, Theoret. Comput. Fluid Dynamics 13, 421 (2000).zbMATHCrossRefGoogle Scholar
  7. [7]
    J. Jeong and F. Hussain, “On the identification of a vortex”, J. Fluid Mech. 285, 69 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    G. S. Jiang and C. W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comput. Phys. 126, 202 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    H. Lamb, “Hidrodynamics”, 6th edition, Cambridge University Press, Cambridge (1932).Google Scholar
  10. [10]
    X. D. Liu, S. Osher, and T. Chan, “Weighted essentially non-oscillatory schemes”, J. Comput. Phys. 115, 200 (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    T. J. Poinsot, and S. K. Lele, “Boundary conditions for direct simulations of compressible viscous reacting flows”, J. Comput. Phys. 101, 104 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    C. W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, J. Comput. Phys. 77, 439 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    R. R. Trieling, J. M. A. van Wesenbeeck and G. J. F. van Heijst, “Dipolar vortices in a strain flow”, Phis. Fluids 10, 144 (1998).zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • F. Grasso
    • 1
  • S. Pirozzoli
    • 1
  1. 1.Dipartimento di Meccanica ed AeronauticaUniversita’ di Roma ”La Sapienza”RomaItaly

Personalised recommendations