Skip to main content

On Well-Posedness and Modelling for Nonlinear Aeroelasticity

  • Conference paper
  • First Online:
Flow Modulation and Fluid—Structure Interaction at Airplane Wings

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 84))

Summary

We consider general theoretical issues of the aeroelastic fluid-structure-interaction. In particular we have chosen an elastic panel in transonic flow as our model problem for computational experiments. First we consider the question of well-posedness of the equation system, giving a uniqueness result. Numerical simulations address the choice of the structural model and the choice of the time-marching-scheme that couples the equations of fluid and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O.O. Bendiksen, G.A. Davis: Nonlinear traveling wave flutter of panels in transonic flow, AIAA Paper 95–1496, 1995

    Google Scholar 

  2. G. Britten, M. Werle, M. Hesse, J. Ballmann: Analysis of an Elastic Wing in Subsonic Flow using Direct Numerical Aeroelastic Simulation, in E. Krause, W. Jäger (eds.), High Performance Computing in Science and Engineering, 2000, Springer Verlag, pp. 305–316

    Google Scholar 

  3. J.R. Cebral, R. Löhner: Conservative load projection and tracking for fluid-structure problems, AIAA Journal, Vol. 35, No. 4, 1997, pp. 687–692

    Article  Google Scholar 

  4. R. Dautray, J.-L. Lions: Mathematical Analysis and Numerical Methods for Science and Technology, Vol. V, Springer-Verlag, Berlin, 1988

    MATH  Google Scholar 

  5. G.A. Davis, O.O. Bendiksen: Transonic panel flutter, AIAA Paper 93–1476, 1993

    Google Scholar 

  6. E.H. Dowell: Aeroelasticity of plates and shells, Noordhoff International Publishing, Leyden, 1975

    Google Scholar 

  7. Foda, M.A.: Influence of shear deformation and rotary inertia on the nonlinear free vibration of a beam with pinned ends, Computers and Structues, Vol. 71, 1999, pp. 663–670

    Google Scholar 

  8. R. Heinrich, K. Pahlke, H. Bleecke: A three dimensional dual-time stepping method for the Solution of the unsteady Navier-Stokes equations, Unsteady Aerodynamics Conference Preceedings, London, paper No. 5, 1996

    Google Scholar 

  9. T.J.R. Hughes: The finite element method, Prentice-Hall, Englewood Cliffs, 1987

    Google Scholar 

  10. J. Hurka, J. Ballmann: Preliminary results of numerical simulations of elastic panels in transonic flow, Notes on Numerical Fluid Mechanics, Vol. 77, 2002, pp. 171–178

    Google Scholar 

  11. J. Hurka, J. Ballmann: Elastic panels in transonic flow, AIAA Paper 2001–2722, 2001

    MATH  Google Scholar 

  12. A. Jameson: Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings, AIAA Paper 91–1596, 1991

    Google Scholar 

  13. Z. Friedman, J.B. Kosmatka: An improved two-node Timoshenko beam finite element, Computers & Structures, Vol. 47, No. 3, 1993, pp. 473–481

    Google Scholar 

  14. N. Kroll, C.-C. Rossow, K. Becker, F. Thiele: The MEGAFLOW project, Aerospace Science and Technology 4, 2000, pp. 223–237; also: FLOWer installation and user handbook, Release 115, 1998

    MATH  Google Scholar 

  15. J.-L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969

    MATH  Google Scholar 

  16. R. Massjung: Uniqueness Results for Aeroelasticity — Lagrangian Approach, Technical Report No. 172, IGPM, RWTH-Aachen, 1999

    Google Scholar 

  17. R.D. Mindlin: Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates, Journal of Applied Mechanics 18, 1951, pp. 31–38

    MATH  Google Scholar 

  18. N.F. Morozov: Nonlinear vibrations of thin plates with allowance for rotational inertia, Soviet Math. Vol.8, 1967

    MATH  Google Scholar 

  19. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling: Numerical Recipes, Cambridge University Press, Cambridge, 1986

    MATH  Google Scholar 

  20. P. Secchi, A. Valli: A free boundary problem for compressible viscous fluids, Journal für reine und angewandte Mathematik, 341, 1983, 1–31

    Google Scholar 

  21. J. Serrin: On the Uniqueness of Compressible Fluid Motions Arch. Rat. Mech. Ana., 3, 1959, 271–288

    Article  Google Scholar 

  22. M. Werle: Gittergenerierung für die Strömungssimulation von elastischen Auftriebskörpern, Diplomarbeit, RWTH-Aachen, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Massjung, R., Hurka, J., Dahmen, W., Ballmann, J. (2003). On Well-Posedness and Modelling for Nonlinear Aeroelasticity. In: Ballmann, J. (eds) Flow Modulation and Fluid—Structure Interaction at Airplane Wings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44866-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44866-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53613-7

  • Online ISBN: 978-3-540-44866-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics