Skip to main content

Design, Qualification and Experimental Investigation on Flexible Wind Tunnel Wing Models

  • Conference paper
  • First Online:
Flow Modulation and Fluid—Structure Interaction at Airplane Wings

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 84))

Summary

The purpose of this work on highly flexible wing models is the validation of the numerical direct simulation, developed in the Collaborative Research Center SFB 401. The first step in the validation process is the investigation of a flexible straight wing model in the subsonic region. The design and construction of this wing model will be described under consideration of aerodynamic and structural constraints. A short introduction in the measurement techniques and the tests under wind-off and windon conditions will be given. Different data reduction methods to obtain the frequency and the damping factor during wind tunnel tests will be introduced. Some experiments under steady state and transient flow conditions will be presented for validation of the numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.V. Eckstrom, D.A. Seidel and M.C. Sandford. Measurements of Unsteady Pressure and Structural Response for an Elastic Supercritical Wing. NASA Technical Paper 3443, 1994

    Google Scholar 

  2. E.C. Yates. AGARD Standard Aerolastic Configurations for Dynamic Response — I.Wing 445.6. AGARD Report No. 765, 1998

    Google Scholar 

  3. F. Liu, J. Cai, Y. Zhu, A.S.W. Wong and H.M. Tsai. Calculation of Wing Flutter by a Coupled CFD-CSD Method. AIAA-2000–0907, 38 th Aerospace Sciences Meeting & Exhibit, Reno, 2000

    Book  Google Scholar 

  4. W.A. Silva and D.E. Raveh. Development of Unsteady Aerodynamic StateSpace Models From CFD-Based Pulse Responses. AIAA 2001–1213,42’nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Seattle, 2001

    Google Scholar 

  5. J.J. Meijer and B.B. Prananta. Static Aeroelastic Simulation of Military Aircraft Configuration in Transsonic Flow. IFASD International Forum on Aeroelasticity and Structural Dynamics, Madrid, pp. 119–132, 2001

    Google Scholar 

  6. R. Palacios, H. Climent, A. Karlsson and B. Winzell. Assessment of Strategies for Correcting Linear Unsteady Aerodynamics Using CFD or Test Results. IFASD International Forum on Aeroelasticity and Structural Dynamics, Madrid, pp. 195–210, 2001

    Google Scholar 

  7. J. W. Edwards, D. M. Schuster, C. V. Spain, DE Keller and R. W. Moses. MAVRIC Flutter Model Transsonic Limit Cycle Oscillation Test. NASA TM-2001–210877, 2001

    Google Scholar 

  8. E. Özger, I. Schell and D. Jacob. On the Structure and Attenuation of an Aircraft Wake. Journal of Aircraft, Vol. 38, No. 6, 2001

    Article  Google Scholar 

  9. E. Lee-Rausch and J. Batina. Wing flutter boundary prediction using unsteady euler aerodynamic method. Journal of Aircraft, Vol. 32, No 1, pp 416–422, 1995

    Article  Google Scholar 

  10. O. Bendiksen and G.-Y. Hwang. Nonlinear flutter calculations for transsonic wings. CEAS Forum on Aeroelasticity and Structural Dynamics, Rome, 1997

    Google Scholar 

  11. A. Dafnis, W. Jung and H.-G. Reimerdes. Auslegung elastischer Windkanal-Flügelmodelle zur Validierung aeroelastischer Berechnungen. Aeroelastik-Tagung der DGLR, pages 261–316, Göttingen, Germany, 1998.

    Google Scholar 

  12. R. Heinrich, K. Pahlke and H. Bleecke. A Three Dimensional Dual-Time Stepping Method for the Solution of the Unsteady Navier-Stokes Equations. RAS ’Unsteady Aerodynamics’ Conference., London, pp. 5.1–5.12, 1996.

    Google Scholar 

  13. D. Nellessen and J. Ballmann. Schallnahe Strömungen um elastische Tragflügel. Fortschrittsberichte VDI., Reihe 7: Strömungstechnik, Nr. 302, 1995.

    Google Scholar 

  14. H. A. Jr. Cole. On-Line Failure Detection and Damping Measurement of Aerospace Structures by Random Decrement Signatures. NASA Contractor Report 2205, Washington D.C., 1973.

    Google Scholar 

  15. S. R. Ibrahim. Random Decrement Technique for Modal Identification of Structures. Journal of Spacecraft, Vol. 14, No. 11, 1977

    Article  Google Scholar 

  16. S. R. Ibrahim and E. C. Mikulcik. A Method for the Direct Identification of Vibration Parameters from the Free Response. Shock and Vibration Bulletin, No. 47, 1977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kämpchen, M., Korsch, H., Dafnis, A., Reimerdes, HG. (2003). Design, Qualification and Experimental Investigation on Flexible Wind Tunnel Wing Models. In: Ballmann, J. (eds) Flow Modulation and Fluid—Structure Interaction at Airplane Wings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44866-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44866-2_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53613-7

  • Online ISBN: 978-3-540-44866-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics