Skip to main content

Concepts for Reduced Structural Models of Airplane Wings in Aeroelasticity

  • Conference paper
  • First Online:
Flow Modulation and Fluid—Structure Interaction at Airplane Wings

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 84))

Summary

A beam model for the idealization of airplane wings for numerical studies in aeroelasticity is presented. The structural model gives a good approximation of the static and dynamic (eigenfrequencies) wing behaviour. It is to be implemented in the routines of computational aeroelasticity within the framework of this Collaborative Research Center. It extends the Timoshenko beam by incorporation of additional effects, such as taper, restrained warping and the effect of ribs and considers different material properties within the wing cross section. Examples are presented which demonstrate the influence of the additional effects on the static and dynamic behaviour of the wing. The reduced structural wing model yields results that are in good agreement with finite—element calculations and provides a suitable tool for sensitivity analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Försching. New Ultra High Capacity Aircraft (UHCA) — Challenges and problems from an aeroelastic point of view. Z. Flugwiss. Weltraumforsch., 18, pp. 219–231, 1994.

    Google Scholar 

  2. G. Britten and J. Ballmann. Fluid—structure interaction at panels and large wings with computational aeroelasticity Proceedings of International Forum on Aeroelasticity and Structural Dynamics, Madrid, pp. 51–62, 2001

    Google Scholar 

  3. S. Duan and M. Piening. Investigation of the torsion-related warping behavior of anisotropic boxbeam structure. DLR Bericht, IB-131–95/33, 1995.

    Google Scholar 

  4. L. Librescu, L. Meirovitch and O. Song. Integrated structural tailoring and control using adaptive materials for advanced aircraft wings. Journal of Aircraft, Vol. 33, No. 1, pp. 203–213, 1996.

    Article  Google Scholar 

  5. V. Matzdorf. Ein quasi-eindimensionales finites Element zur globalen statischen und dynamischen Strukturanalyse dünnwandiger anisotroper Stab- oder stabähnlicher Konstruktionen. Dissertation, Magdeburg, Germany, 1991.

    Google Scholar 

  6. G. Karpouzian and L. Librescu. Comprehensive model of anisotropic composite aircraft wings suitable for aeroelastic analyses. Journal of Aircraft, Vol. 31, No. 3, pp. 703–712, 1994.

    Article  Google Scholar 

  7. R.Q. Borchert. Improvements in design oriented equivalent plate modeling of wing structures. PhD-Thesis, University of Washington, 1995.

    Google Scholar 

  8. G.L. Giles. Equivalent plate modeling for conceptual design of aircraft wing structures. AIAA Journal, 95–3945, pp. 1–17, 1995.

    Google Scholar 

  9. B. Langesfor. A suggested method for calculating the stresses in wings with non— rectangular plates. Saab TN 23, Linköping, Sweden, 1953.

    Google Scholar 

  10. E. Giencke. Über die Erweiterung des Schubfeldschemas. Jahrbuch der WGLR, pp. 413–421, 1962.

    Google Scholar 

  11. C. Brühl. Beitrag zur Berechnung schiefwinklig eingespannter Kastenträger. DVL Bericht, No. 18, 1960.

    Google Scholar 

  12. H. Ebner. Die Beanspruchung dünwandiger Kastenträger auf Drillung bei behinderter Querschnittswölbung. ZFM, Vol. 24, No. 23, 1933.

    Google Scholar 

  13. W. Jung and H.-G. Reimerdes. Ein Beitrag zur aeroelastischen Untersuchung mit idealisierten Tragflügeln. In DGLR Jahrestagung, Vol. 3, pages 1371–1378, Berlin, Germany, 1999.

    Google Scholar 

  14. R. Heilig. Beitrag zur Theorie der Kastenträger beliebiger Querschnittsform. Der Stahlbau, 11, pp. 333–349, 1961.

    Google Scholar 

  15. K. Bhaskar and L. Librescu. A geometrically non—linear theory for laminated anisotropic thin-walled beams. Int. J. Engng Sci., 33, pp. 1331–1344, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jung, W., Reimerdes, HG. (2003). Concepts for Reduced Structural Models of Airplane Wings in Aeroelasticity. In: Ballmann, J. (eds) Flow Modulation and Fluid—Structure Interaction at Airplane Wings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44866-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44866-2_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53613-7

  • Online ISBN: 978-3-540-44866-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics