Skip to main content

OPTIMA: A New Score Function for the Detection of Remote Homologs

  • Conference paper
Mathematical Methods for Protein Structure Analysis and Design

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 2666))

  • 527 Accesses

Abstract

A new method to derive a score function to detect remote relationships between protein sequences has been developed. The new score function, OPTIMA, was obtained after maximization of a function of merit representing a measure of success in recognizing homologs of the newly sequenced protein among thousands of non-homolog sequences in the databases. We find that the new score function obtained in such a manner performs better than standard score functions for the identification of distant homologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence analysis. Proc. Nat. Acad. Sci. USA 85, 2444–2448 (1988)

    Article  Google Scholar 

  2. Altschul, S.F., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment tool. J. Mol. Biol. 215, 403–410 (1990)

    Google Scholar 

  3. Altschul, S.F., Gish, W.: Local alignment statistics. Methods Enzymol. 215, 460–480 (1996)

    Article  Google Scholar 

  4. Lipman, D.J., Pearson, W.R.: Rapid and sensitive protein similarity searches. Science 227, 1435–1441 (1985)

    Article  Google Scholar 

  5. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)

    Article  Google Scholar 

  6. Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in proteins. In: Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, vol. 5 (1978)

    Google Scholar 

  7. Gonnet, G.H., Cohen, M.A., Benner, S.A.: Exhaustive matching of the entire protein database. Science 256, 1443–1445 (1992)

    Article  Google Scholar 

  8. Jones, D.T., Taylor, W.R., Thornton, J.M.: The rapid generation of mutation data matrices from protein sequences. CABIOS 8, 275–282 (1992)

    Google Scholar 

  9. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Nat. Acad. Sci. USA 89, 10915–10919 (1992)

    Article  Google Scholar 

  10. Overington, J., Donnelly, D., Johnson, M.S., Šali, A., Blundell, T.L.: Environment-specific amino-acid substitution tables: Tertiary templates and prediction of protein folds. Protein Sci. 1, 216–226 (1992)

    Article  Google Scholar 

  11. Brenner, S.E., Chothia, C., Hubbard, T.J.P.: Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships. Proc. Nat. Acad. Sci. USA 95, 6073–6078 (1998)

    Article  Google Scholar 

  12. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.L.: Gapped Blast and Psi-Blast: A new generation of protein database search programs. Nucl. Acid Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  13. Tatusov, R.L., Galperin, M.Y., Koonin, E.V.: The COG database: a tool for genome-scale analysis of proteins functions and evolution. Nucleic Acids Res. 28, 33–36 (2000)

    Article  Google Scholar 

  14. Karlin, S., Altschul, S.F.: Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Nat. Acad. Sci. USA 87, 2264–2268 (1990)

    Article  MATH  Google Scholar 

  15. Dembo, A., Karlin, S., Zeitouni, O.: Limit distribution of maximal non-aligned two-sequence segmental score. Ann. Prob. 22, 2022 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pearson, W.R.: Empirical statistical estimates for sequence similarity searches. J. Mol. Biol. 276, 71–84 (1998)

    Article  Google Scholar 

  17. Gumbel, E.J.: Statistics of Extremes. Columbia University Press, New York (1958)

    MATH  Google Scholar 

  18. Gumbel, E.J.: Statistics theory of extreme values and some practical applications. Washington: U.S. Government Printing Office: National Bureau of Standards Applied Mathematics Series, vol. 33 (1954)

    Google Scholar 

  19. Bateman, A., Birney, E., Durbin, R., Eddy, S.R., Finn, R.D., Sonnhammer, E.L.L.: Pfam 3.1: 1313 multiple alignments match the majority of proteins. Nucleic Acids Research 27, 260–262 (1999)

    Article  Google Scholar 

  20. Dennis Jr., J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs. Prentice-Hall, New York (1983)

    MATH  Google Scholar 

  21. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  22. Vogt, G., Etzold, T., Argos, P.: An assessment of amino acid exchange matrices in aligning protein sequences: The twilight zone revisited. J. Mol. Biol. 249, 816–831 (1995)

    Article  Google Scholar 

  23. Metz, C.E.: ROC methodology in radiologic imaging. Invest. Radiol. 21, 720–733 (1986)

    Article  Google Scholar 

  24. Swets, J.A.: Measuring the accuracy of diagnostic system. Science 240, 1285–1293 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kann, M., Goldstein, R.A. (2003). OPTIMA: A New Score Function for the Detection of Remote Homologs. In: Guerra, C., Istrail, S. (eds) Mathematical Methods for Protein Structure Analysis and Design. Lecture Notes in Computer Science(), vol 2666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44827-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44827-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40104-9

  • Online ISBN: 978-3-540-44827-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics