Skip to main content

Belief Functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem

  • Chapter
Classic Works of the Dempster-Shafer Theory of Belief Functions

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 219))

Abstract

We generalize the Bayes’ theorem within the transferable belief model framework. The Generalized Bayesian Theorem (GBT) allows us to compute the belief over a space Θ given an observation x⊆ X when one knows only the beliefs over X for every θi ∈ Θ. We also discuss the Disjunctive Rule of Combination (DRC) for distinct pieces of evidence. This rule allows us to compute the belief over X from the beliefs induced by two distinct pieces of evidence when one knows only that one of the pieces of evidence holds. The properties of the DRC and GBT and their uses for belief propagation in directed belief networks are analysed. The use of the discounting factors is justfied. The application of these rules is illustrated by an example of medical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cohen, M.S., Laskey, K.B. and Ulvila, J.W. (1987) The management of uncertainty in intelligence data: a self-reconciling evidential database. Falls Church, VA: Decision Science Consortium, Inc.

    Google Scholar 

  • Delgado M. and Moral S. (1987) On the concept of possibility-probabilty consistency. Fuzzy Sets and Systems 21: 311–3018.

    Article  MATH  MathSciNet  Google Scholar 

  • Dubois D. and Prade H. (1985) Théorie des possibilités. Masson, Paris.

    Google Scholar 

  • Dubois D. and Prade H. (1986a) A set theoretical view of belief functions. Int. J. Gen. Systems, 12: 193–226.

    Article  MathSciNet  Google Scholar 

  • Dubois D. and Prade H. (1986b) On the unicity of Dempster rule of combination. Int. J. Intelligent Systems, 1: 133–142.

    Article  MATH  Google Scholar 

  • Dubois D. and Prade H. (1987) The principle of minimum specificity as a basis for evidential reasoning. in: Uncertainty in knowledge-based systems, Bouchon B. and Yager R. eds, Springer Verlag, Berlin, p. 75–84.

    Google Scholar 

  • Dubois D. and Prade H. (1988) Representation and combination of uncertainty with belief functions and possibility measures. Computational Intelligence, 4: 244–264.

    Article  Google Scholar 

  • Edwards A.W.F. (1972) Likelihood. Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  • Gebhardt F. and Kruse R. (1993) The context model: an integrating view of vagueness and uncertainty. Int. J. Approx. Reas. 9(3), 283–314.

    Article  MATH  MathSciNet  Google Scholar 

  • Hacking I. (1965) Logic of statistical inference. Cambridge University Press, Cambridge, U.K.

    MATH  Google Scholar 

  • Halpern J.Y. and Fagin R. (1990) Two views of belief: Belief as Generlaized Probability and Belief as Evidence. Proc. Eighth National Conf. on AI, 112–119.

    Google Scholar 

  • Hsia Y.-T. (1991) Characterizing Belief with Minimum Commitment. IJCAI-91: 1184–1189.

    Google Scholar 

  • Kennes R. and Smets Ph. (1990) Computational Aspects of the Mšbius Transform. Procs of the 6th Conf. on Uncertainty in AI, Cambridge, USA.

    Google Scholar 

  • KLAWONN F. and SCHWECKE E. (1992) On the axiomatic justification of Dempster’s rule of combination. Int. J. Intel. Systems 7: 469–478.

    Article  MATH  Google Scholar 

  • KLAWONN F. and SMETS Ph. (1992) The dynamic of belief in the transferable belief model and specialization-generalization matrices. in Dubois D., Wellman M.P., d’Ambrosio B. and Smets P. Uncertainty in AI 92. Morgan Kaufmann, San Mateo, Ca, USA, 1992, p. 130–137.

    Google Scholar 

  • Kruse R. and Schwecke E. (1990) Specialization: a new concept for uncertainty handling with belief functions. Int. J. Gen. Systems 18: 49–60.

    Article  MATH  Google Scholar 

  • Kohlas J. and Monney P. A. (1990) Modeling and reasoning with hints. Technical Report. Inst. Automation and OR. Univ. Fribourg.

    Google Scholar 

  • Moral S. (1985) Informaciòn difusa. Relationes entre probabilidad y possibilidad. Tesis Doctoral, Universidad de Granada.

    Google Scholar 

  • Nguyen T. H. and Smets Ph. (1993) On Dynamics of Cautious Belief and Conditional Objects. Int. J. Approx. Reas. 8(2), 89–104.

    Article  MATH  MathSciNet  Google Scholar 

  • Pearl J. (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann Pub. San Mateo, Ca, USA.

    Google Scholar 

  • Pearl J. (1990) Reasoning with Belief Functions: an Analysis of Compatibility. Intern. J. Approx. Reasoning, 4: 363–390.

    Article  MathSciNet  Google Scholar 

  • Shafer G. (1976) A mathematical theory of evidence. Princeton Univ. Press. Princeton, NJ.

    MATH  Google Scholar 

  • Shafer G. (1982) Belief functions and parametric models. J. Roy. Statist. Soc. B44 322-352.

    MathSciNet  Google Scholar 

  • Shafer G., Shenoy P.P. and Mellouli K. (1987) Propagating belief functions in qualitative Markov trees. Int. J. Approx. Reasoning, 1: 349–400.

    Article  MATH  MathSciNet  Google Scholar 

  • Smets Ph. (1978) Un modèle mathématico-statistique simulant le processus du diagnostic médical. Doctoral dissertation, Université Libre de Bruxelles, Bruxelles, (Available through University Microfilm International, 30–32 Mortimer Street, London W1N 7RA, thesis 80-70,003)

    Google Scholar 

  • Smets Ph. (1981) Medical Diagnosis : Fuzzy Sets and Degrees of Belief. Fuzzy Sets and systems, 5 : 259–266.

    Article  MATH  MathSciNet  Google Scholar 

  • Smets P. (1982) Possibilistic Inference from Statistical Data. In : Second World Conference on Mathematics at the Service of Man. A. Ballester, D. Cardus and E. Trillas eds. Universidad Politecnica de Las Palmas, pp. 611–613.

    Google Scholar 

  • Smets Ph. (1986) Bayes’ theorem generalized for belief functions. Proc. ECAI-86, vol. II. 169–171, 1986.

    Google Scholar 

  • Smets Ph. (1988) Belief functions. in Smets Ph, Mamdani A. , Dubois D. and Prade H. ed. Non standard logics for automated reasoning. Academic Press, London p. 253–286.

    Google Scholar 

  • Smets Ph. (1990) The combination of evidence in the transferable belief model. IEEE Trans. Pattern analysis and Machine Intelligence, 12: 447–458.

    Article  Google Scholar 

  • Smets Ph. (1991) The Transferable Belief Model and Other Interpretations of Dempster-Shafer’s Model. in Bonissone P.P., Henrion M., Kanal L.N. and Lemmer J.F. eds. Uncertainty in Artificial Intelligence 6, North Holland, Amsteram, 375–384.

    Google Scholar 

  • Smets Ph. (1992a) Resolving misunderstandings about belief functions: A response to the many criticisms raised by J. Pearl. Int. J. Approximate Reasoning. 6: 321–344.

    Article  MATH  Google Scholar 

  • Smets Ph. (1992b) The nature of the unnormalized beliefs encountered in the transferable belief model. in Dubois D., Wellman M.P., d’Ambrosio B. and Smets P. Uncertainty in AI 92. Morgan Kaufmann, San Mateo, Ca, USA, 1992, p. 292–297.

    Google Scholar 

  • Smets Ph. (1992c) The concept of distinct evidence., IPMU 92 Proceedings, p. 789–794.

    Google Scholar 

  • Smets P. and Kennes R. (1994) The transferable belief model. Artificial Intelligence, 66(2), 191–234.

    Article  MATH  MathSciNet  Google Scholar 

  • Yager R. (1986) The entailment principle for Dempster-Shafer granules. Int. J. Intell. Systems, 1: 247–262

    Article  MATH  Google Scholar 

  • Zadeh L.A. (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems. 1: 3–28.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smets, P. (2008). Belief Functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem. In: Yager, R.R., Liu, L. (eds) Classic Works of the Dempster-Shafer Theory of Belief Functions. Studies in Fuzziness and Soft Computing, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44792-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44792-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25381-5

  • Online ISBN: 978-3-540-44792-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics