Skip to main content

Nonlinear Wave Collapse

  • Chapter
Spatial Solitons

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 82))

  • 761 Accesses

Summary

We review the general properties of optical pulses that produce wave collapse in bulk Kerr media. First, analytical tools emphasizing the threshold power for collapse are recalled for the case in which one wave component is described by a single nonlinear Schrödinger equation. Next, the case of several light waves is investigated using a system of coupled nonlinear Schrödinger equations. Depending on their initial separation distance and power, two waves are shown either to disperse or to collapse individually, or to attract each other to form a central lobe, which may blow up at a finite propagation distance. Furthermore, the influence of four-wave mixing and walk-off between two components is detailed. It is shown that near phase matching, four-wave mixing can reinforce the collapse by lowering the self-focusing power threshold, whereas walk-off inhibits the collapse by detrapping the waves. Finally, collapse in media that promote an interplay between cubic and quadratic nonlinearities is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.C. Newell, J.V. Moloney, Nonlinear Optics (Addison-Wesley, Redwood City, California, 1991 ).

    Google Scholar 

  2. G.P. Agrawal, Nonlinear Fiber Optics ( Academic Press, New York, 1989 ).

    Google Scholar 

  3. R.Y. Chiao, E. Garmire, C.H. Townes, Self-trapping of optical beams, Phys. Rev. Lett. 13, 479 (1964);

    Article  ADS  Google Scholar 

  4. P.L. Kelley, Self-focusing of optical beams, Phys. Rev. Lett. 15, 1005 (1965).

    Article  ADS  Google Scholar 

  5. J. Juul Rasmussen, K. Rypdal, Blow-up in nonlinear Schrödinger equations —I: a general review, Phys. Scr. 33, 481 (1986).

    Article  MATH  Google Scholar 

  6. A.L. Berkhoer, V.E. Zakharov, Self-excitation of waves with different polarizations in nonlinear media, Zh. Eksp. Teor. Fiz. 58, 903 (1970) [Sov. Phys. JETP 31, 486 (1970)].

    Google Scholar 

  7. S.V. Manakov. On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Zh. Eksp. Teor. Fiz. 65, 505 (1973) [Soy. Phys. JETP 38, 248 (1974)].

    Google Scholar 

  8. C.R. Menyuk, Stability of solitons in birefringent optical fibers: I. Equal propagation amplitudes. Opt. Lett. 12. 614 (1987).

    Article  ADS  Google Scholar 

  9. C.R. Menyuk, Stability of solitons in birefringent optical fibers: II. Arbitrary amplitudes, J. Opt. Soc. Am. B 5, 392 (1988).

    Article  ADS  Google Scholar 

  10. J.U. Kang, G.I. Stegeman, J.S. Aitchison, N. Akhmediev, Observation of Manakov spatial solitons in A1GaAs planar waveguides. Phys. Rev. Lett. 76. 3699 (1996).

    Google Scholar 

  11. N. Akhmediev, JiM. Soto-Crespo, Dynamics of solitonlike pulse propagation in birefringent optical fibers. Phys. Rev. E 49, 5742 (1994).

    Article  ADS  Google Scholar 

  12. C.R. Menyuk, Nonlinear pulse propagation in birefringent optical fibers. IEEE J. Quantum Electron. QE-23, 174 (1987); D. N. Christodoulides, R.I. Joseph, Vector solitons in birefringent nonlinear dispersive media.. Opt. Lett. 13. 53 (1988).

    Google Scholar 

  13. X.D. Cao, C.J. McKinstrie, Solitary-wave stability in birefringent optical fibers,.1. Opt. Soc. Ara. B 10. 1202 (1993).

    Article  ADS  Google Scholar 

  14. D. Mihalache, D. Mazilu, L. Torner, Stability of walking vector solitons, Phys. Rev. Lett. 81, 4353 (1998).

    Article  ADS  Google Scholar 

  15. D.N. Christodoulides, T.H. Coskun, NI. Mitchell, M. Segev, Theory of incoherent self-focusing in biased photorefractive media. Phys. Rev. Lett. 78, 616 (1997).

    Article  ADS  Google Scholar 

  16. C.J. McKinstrie, D.A. Russel. Nonlinear focusing of coupled waves. Phys. Rey. Lett. 61, 2929 (1988).

    Article  ADS  Google Scholar 

  17. L. Bergé, O. Bang, J. Juul Rasmussen, V.K. Mezentsev. Self-focusing and solitonlike structures in materials with competing quadratic and cubic nonlinearities, Phys. Rev. E 55, 3555 (1997).

    Google Scholar 

  18. A.V. Buryak, Yu.S. Kivshar, S. Trillo, Optical solitons supported by competing nonlinearities, Opt. Lett. 20, 1961 (1995).

    Article  ADS  Google Scholar 

  19. S. Trillo, A.V. Buryak, Yu.S. Kivshar, Modulational instabilities and optical solitons due to competition of x(2) and x(3) nonlinearities, Opt. Commun. 122. 200 (1996).

    Article  ADS  Google Scholar 

  20. O. Bang, Dynamical equations for wave packets in materials with both quadratic and cubic response, J. Opt. Soc. Am. B 14, 51 (1997).

    Article  ADS  Google Scholar 

  21. W.E. Torruellas, Z. Wang, D.J. Hagan, E.W. Van Stryland, G.1. Stegernan, L. Torner, C.R.. Menyuk, Observation of two-dimensional spatial solitary waves in a quadratic medium. Phys. Rev. Lett. 74, 5036 (1995).

    Article  ADS  Google Scholar 

  22. L. Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep. 303, 259 (1998).

    Article  Google Scholar 

  23. R.T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18, 1794 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys. 87, 567 (1983)

    Article  MATH  Google Scholar 

  25. E.A. Kuznetsov, J. Juul Rasmussen, K. Rypdal, S.K. Turitsyn. Sharper criteria for the wave collapse, Physica D 87, 273 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. N.G. Vakhitov, A.A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation, Izv. Vuz. Radiofiz. 16, 1020 (1973) [Radiophys. Quantum Electron. 16, 783 (1975)].

    Google Scholar 

  27. A.A. Kolokolov, Stability of stationary solutions of nonlinear wave equations, Izv. Vuz. Radiofiz. 17, 1332 (1974) [Radiophys. Quantum Electron. 17, 1016 (1976)].

    Google Scholar 

  28. E.A. Kuznetsov, A.M. Rubenchik, V.E. Zakharov, Soliton stability in plasmas and hydrodynamics, Phys. Rep. 142, 103 (1986).

    Article  MathSciNet  Google Scholar 

  29. D. Anderson, Variational approach to nonlinear pulse propagation in optical fibers, Phys. Rev. A 27, 3135 (1983).

    Article  Google Scholar 

  30. M. Desaix, D. Anderson, M. Lisak, Variational approach to collapse of optical pulses, J. Opt. Soc. Am. B 8, 2082 (1991).

    Article  ADS  Google Scholar 

  31. J.H. Marburger, Self-focusing: Theory, Prog. Quantum Electron. 4, 35 (1975).

    Article  ADS  Google Scholar 

  32. L. Bergé, Coalescence and instability of copropagating nonlinear waves, Phys. Rev. E 58, 6606 (1998).

    Google Scholar 

  33. O. Bang, L. Bergé, J. Juul Rasmussen, Fusion, collapse and stationary bound states of incoherently-coupled waves in bulk cubic media, Phys. Rev. E 59, 4600 (1999).

    Google Scholar 

  34. L. Bergé, O. Bang, W. Krolikowski, Influence of four-wave mixing and walk-off on the self-focusing of coupled waves, Phys. Rev. Lett. 84, 3302 (2000).

    Article  ADS  Google Scholar 

  35. G.I. Stegeman, D.J. Hagan, L. Torner, x(2) cascading phenomena and their applications to signal processing, mode-locking, pulse compression and solitons, Opt. Quantum Electron. 28, 1691 (1996).

    Article  Google Scholar 

  36. S.K. Turitsyn, Stability of two-and three-dimensional optical solitons in a media with quadratic nonlinearity, Pis’ma Zh. Eksp. Teor. Fiz. 61, 458 (1995) [JETP Lett. 61, 469 (1995)].

    Google Scholar 

  37. L. Bergé, V.K. Mezentsev, J. Juul Rasmussen, J. Wyller, Formation of stable solitons in quadratic nonlinear media, Phys. Rev. A 52, R28 (1995).

    Article  Google Scholar 

  38. D.E. Pelinovsky, A.V. Buryak, Yu.S. Kivshar, Instability of solitons governed by quadratic nonlinearities, Phys. Rev. Lett. 75, 591 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. O. Bang, L. Bergé, J. Juul Rasmussen, Wave collapse in bulk media with quadratic and cubic responses, Opt. Commun. 146, 231 (1998).

    Article  ADS  Google Scholar 

  40. O. Bang, Yu.S. Kivshar, A.V. Buryak, A. De Rossi, S. Trillo, Two-dimensional solitary waves in media with quadratic and cubic nonlinearity, Phys. Rev. E 58, 5057 (1998).

    Google Scholar 

  41. X. Liu, L.J. Qian, F.W. Wise, Generation of optical spatiotemporal solitons, Phys. Rev. Lett. 82, 4631 (1999).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bergé, L. (2001). Nonlinear Wave Collapse. In: Trillo, S., Torruellas, W. (eds) Spatial Solitons. Springer Series in Optical Sciences, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44582-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44582-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07498-1

  • Online ISBN: 978-3-540-44582-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics