Skip to main content

High Performance Computer Codes and their Application to Optimize Crystal Growth Processes, II

  • Conference paper
Numerical Flow Simulation II

Summary

The paper deals with the continuation of the development of high performance computer codes and their application to modelling of crystal growth processes started by the authors’ research groups and reported in [1]. The mathematical model is based on the continuity equation and the conservation equations for momentum and heat transfer combined with mass transfer including chemical reactions. The thermal radiation analysis assumes a non-participating medium and semi-transparent walls. The radiation heat transfer is coupled with convection and conduction. The heat conduction includes thermal solid/fluid interactions between the gas and solid parts of the computational domain. The results of thermal calculations are used for the analysis of thermal stresses. The models are implemented in finite volume (both, block-structured and unstructured on non-orthogonal grids), and spectral and coupled finite volume/spectral numerical solution procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.Droll, M.El Ganaoui, L.Kadinski, M.Kurz, A.Lamazouade, O.Louchart, D.Morvan, M.Naamoune, A.Pusztai, I.Raspo, P.Bontoux, F.Durst, G.Müller, J.Ouazzani, and M.Schäfer. High Performance Computer Codes and their Application to Optimize Crystal Growth Processes. In Numerical Flow Simulation I, volume 66 of Notes on Numerical Fluid Mechanics, pages 115–143. Vieweg Verlag, 1998.

    Google Scholar 

  2. F. Durst, L. Kadinski, and M. Schäfer. A multigrid solver for fluid flow and mass transfer coupled with grey-body surface radiation for the numerical simulation of CVD processes. J. Crystal Growth, 146: 202–208, 1995.

    Article  Google Scholar 

  3. L. Kadinski. Mathematische Modellierung and numerische Simulation von CVD-Prozessen in der Halbleitertechnik. PhD thesis, Friedrich-Alexander-Universit“at zu Erlangen, 1996.

    Google Scholar 

  4. Modest. Radiative Heat Transfer. McGraw-Hill, 1993.

    Google Scholar 

  5. Timoschenko and Goodier. Theory of elasticity. McGraw-Hill Book Company, Inc.

    Google Scholar 

  6. D. Lambropoulos J.: The isotropic assumption during czochralski growth of single semiconductors crystals. Journal of Crystal Growth, 84: 349–358, 1987.

    Article  Google Scholar 

  7. F. Durst and M. Schäfer. A parallel blockstructured multigrid method for the prediction of incompressible flows. Int. J. for Num. Meth. in Fluids,22:549–565, 1996.

    Google Scholar 

  8. M. Kurz. Development of CrysVUN++, a software system for numerical modelling and control of industrial crystal growth processes. Ph. D. thesis, university of Erlangen, 1998.

    Google Scholar 

  9. P. Droll, M. Schäfer, O. Louchart, and P. Bontoux. Coupling of a finite-volume method with a pseudospectral method. ECCOMAS 98, Proceedings, 1 (2): 1240–1245, 1998.

    Google Scholar 

  10. S. Hugues and A. Randriamampianina. An improved projection scheme applied to pseudospectral methods for the incompressible Navier-Stokes equations. Int. J. for Num. Meth. in Fluids,1997.

    Google Scholar 

  11. M. Hortmann and M. Perié. Finite volume multigrid prediction of laminar natural convection: Bench-mark solutions. Int. J. for Num. Meth. in Fluids,11:189–207, 1990.

    Google Scholar 

  12. P. Droll and M. Schäfer. An implicit pseudospectral method for the solution of the incompressible Navier-Stokes equations. Special Issue of CFD Journal, 9, to appear in 2000.

    Google Scholar 

  13. C. D. Dimitropoulos, B. J. Edwards, K.-S. Chae, and A. N. Beris. Efficient pseudospectral flow simulations in moderately complex geometries. J. of Comp. Physics, 144: 517–549, 1998.

    Article  MathSciNet  Google Scholar 

  14. Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7: 856–869, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  15. G.L.G. Sleijpen and D.R. Fokkema. BiCGSTAB(L) for linear matrices involving unsymmetric matrices with complex spectrum. ETNA, 1: 11, 1993.

    MathSciNet  MATH  Google Scholar 

  16. E. Serre and J. P. Pulicani. A 3d pseudospectral method for rotating flows in a cylinder. Int. J. of Computers and Fluids,Paper in print.

    Google Scholar 

  17. O. Savas. Stability of bödewadt flow. J. of Fluid Mech., 183: 77–94, 1987.

    Article  Google Scholar 

  18. H.P. Greenspan. The theory of rotating fluids. Cambridge University Press, 1972.

    Google Scholar 

  19. M.P. Escudier. Observations of the flow produced in a cylindrical container by a rotating endwall. Exp. in Fluids.,2:189–196, 1984.

    Google Scholar 

  20. R. Rupp, P. Lanig, J. Völkl,, and D. Stephani. First results on silicon carbide vapour phase epitaxy growth in a new type of vertical low pressure chemical vapor deposition reactor. J. Crystal Growth, 31: 41–146, 1995.

    Google Scholar 

  21. M. D. Allendorf and R. J. Kee. A model of silicon carbide chemical vapor deposition. J. Electrochem. Soc., 138: 841–852, 1991.

    Article  Google Scholar 

  22. M. D. Allendorf. Equilibrium predictions of the role of organosilicon compounds in the chemical vapor deposition of silicon carbide. J. Electrochem. Soc., 140: 747–753, 1993.

    Article  Google Scholar 

  23. P. Kaufmann and Yu. N. Makarov. Modelling of flow, heat transfer, mass transport during CVD of SiC in a vertical reactor. Technical report, LSTM, University Erlangen-Nürnberg, 1994. unpublished.

    Google Scholar 

  24. T. Weber. Die numerische Simulation reaktiver Strömungen als Basis zukünftiger Reaktormodellierungen. PhD thesis, Friedrich-Alexander-Universität zu Erlangen, 2000.

    Google Scholar 

  25. R. Rupp, P. Lanig, J. Völkl, and D. Stephani. Mater. Res. Soc. Symp. Proc, 423:253ff, 1996.

    Article  Google Scholar 

  26. A.N. Vorobev, A.E. Komissarov, A.S. Segal, Yu.N. Makarov, S.Yu. Karpov, A.I. Zhmakin, and R. Rupp. Modeling analysis of gas phase nucleation in silicon carbide chemical vapor deposition. Mat. Sci Eng, B, 61–62: 176–178, 1999.

    Google Scholar 

  27. M. Kurz and G. Müller. Control of thermal conditions during crystal growth by inverse modelling. J. Crystal Growth.

    Google Scholar 

  28. El Ganaoui M. and Bontoux P. An homogeneisation method for solid-liquid phase change during directional solidification. ASME H.T.D., Numerical and Experimental methods in Heat Transfer, 361: 453–469, 1998.

    Google Scholar 

  29. M. El Ganaoui. Modélisation de la convection instationnaire en presence d’un front de solidification déformable. application à la croissance cristalline. Phd Thesis, 1997.

    Google Scholar 

  30. D. Morvan, M. El Ganaoui, and P. Bontoux. Numerical simulation of 2d crystal growth problems in a vertical bridgman-stockbarger furnace, latent heat effects and crystal-melt in interface morphology. Int. J. Heat Mass Transfer, 42: 573–579, 1999.

    Article  MATH  Google Scholar 

  31. El Ganaoui M., Bontoux P., and et Morvan D. Capture d’un front de solidification en interaction avec un bain fondu instationnaire. C. R. Acad. Sciences Paris, t. 327 (Srie II b): 41–48, 1999.

    MATH  Google Scholar 

  32. Lamazouade A., El Ganaoui M., Morvan D, and et Bontoux P. Simulation numérique par une approche porosité enthalpie de la convection thermique et solutale dans une ampoule de bridgman. Int. J. of Thermal Sciences (Revue Générale de Thermique), 8 (N 38), 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Degenhardt, A. et al. (2001). High Performance Computer Codes and their Application to Optimize Crystal Growth Processes, II. In: Hirschel, E.H. (eds) Numerical Flow Simulation II. Notes on Numerical Fluid Mechanics (NNFM), vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44567-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44567-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07485-1

  • Online ISBN: 978-3-540-44567-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics