Skip to main content

Human Preferences and their Applications in Evolutionary Multi—Objective Optimization

  • Chapter

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 167))

Summary

This chapter talks about (human- and machine-generated) preferences, and their use in multi-objective optimization. In the first part, preferences are introduced and discussed; utility function based preferences (American school) and outranking based preferences (French school) are presented and their properties explored and examined. Issues such as transitivity and group preferences are also discussed. In the second part, the integration of preferences with various evolutionary multi-objective optimization methods is introduced and various applications thereof presented. Finally, a brief example of machine (agent) generated preferences is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alan R. Anderson and Nuel D. Belnap, Jr. Etailment. The Logic of Relevance and Necessity, volume I. Princeton University Press, 1975.

    Google Scholar 

  2. Keneth J. Arrow. Social Choice and Individual Values. John Wiley & Sons, 1951. 2nd edition 1963, published by Yale University Press.

    Google Scholar 

  3. Keneth J. Arrow. Tullock and an existance theorem. Public Choice, 6:105–112, 1969.

    Article  Google Scholar 

  4. Thomas Bäck. Optimal mutation rates in genetic search. In Stephanie Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 2–8. Morgan Kaufmann, 1993.

    Google Scholar 

  5. Carlos A. Bana e Costa, editor. Readings in Multiple Criteria Decision Aid. Springer-Verlag, Berlin, 1990.

    MATH  Google Scholar 

  6. James O. Berger. Statistical Decision Theory: Foundations, Concepts and Methods. Springer-Verlag, New York, 1980.

    Book  MATH  Google Scholar 

  7. Jean Charles de Borda. Mémoire sur les Élections au Scrutin. Mémoires de l’Académie des Sciences, 1781.

    Google Scholar 

  8. Denis Bouyssou, Marc Pirlot, and Philippe Vincke. A general model of preference aggregation. In M.H. Karwan, J. Spronk, and J. Wallenius, editors, Essays in Decision Making. A Volume in Honour of Stanley Zionts, pages 120–134. Springer, 1997. http://www.7kt.org/papers/ZIONTS.zip.

    Chapter  Google Scholar 

  9. Jürgen Branke, Thomas Kaußler, and Hartmur Schmeck. Guidance in evolutionary multi-objective optimization. Advances in Engineering Software, 32(6):499–507, 2001.

    Article  MATH  Google Scholar 

  10. Jean-Pierre Brans and Philippe Vincke. A preference ranking organisation method (the PROMETHEE method for multiple criteria decision-making). Managment Science, 31(6) :647–656, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  11. Christer Carlsson, editor. Exploring the Limits of Support Systems, TUCS General Publications No 3. Turku Centre for Computer Science, December 1996.

    Google Scholar 

  12. Christer Carlsson. Soft computing and decision support systems. In 6th European Congress on Intelligent Techniques and Soft Computing EUFIT ′98, Aachen, Germany, 1998. ELITE-Foundation. Invited lecture CB 3.

    Google Scholar 

  13. Roderick M. Chisholm and Ernest Sosa. On the logic of “intrinsically better”. American Philosophical Quarterly, 3:244–249, 1966.

    Google Scholar 

  14. Carlos A. Coello Coello. A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowledge and Information System. An International Journal, 1(3):269–308, August 1999.

    Google Scholar 

  15. Carlos A. Coello Coello. Handling preferences in evolutionary multiobjective optimization: A survey. In Congress on Evolutionary Computation (CEC’2000), volume 1, pages 30–37. IEEE Service Center, Piscataway, New Jersey, July 2000.

    Google Scholar 

  16. Carlos A. Coello Coello. An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys, 32(2):109–143, 2000.

    Article  Google Scholar 

  17. Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer, Boston, 2002.

    Book  MATH  Google Scholar 

  18. Marie Jean Antoine Nicolas de Caritat Condorcet. Essai sur l’application de l’analyse à la probabilité des décision rendues à la pluralité des voix. Imprimerie Royale, 1785.

    Google Scholar 

  19. Dragan Cvetković. Evolutionary Multi-Objective Decision Support Systems for Conceptual Design. PhD thesis, School of Computing, University of Plymouth, Plymouth, UK, 2000.

    Google Scholar 

  20. Dragan Cvetković and Ian C. Parmee. Genetic algorithm-based multi-objective optimisation and conceptual engineering design. In Proceedings of the 1999 Congress on Evolutionary Computation — CEC′99, pages 29–36, Washington D.C., USA, July 1999. IEEE.

    Google Scholar 

  21. Dragan Cvetković and Ian C. Parmee. Designer’s preferences and multiobjective preliminary design processes. In Ian C. Parmee, editor, Evolutionary Design and Manufacture: Selected Papers from ACDM′00, pages 249–260. Springer, London, 2000.

    Chapter  Google Scholar 

  22. Dragan Cvetković and Ian C. Parmee. Agent-based support within an interactive evolutionary design system. Aritificial Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM), 16(5):331–342, November 2002.

    Google Scholar 

  23. Dragan Cvetković and Ian C. Parmee. Preferences and their application in evolutionary multiobjective optimisation. IEEE Transactions on Evolutionary Computation, 6(1):42–57, February 2002.

    Article  Google Scholar 

  24. Dragan Cvetković, Ian C. Parmee, and Eric Webb. Multi-objective optimisation and preliminary airframe design. In Ian C. Parmee, editor, Adaptive Computing in Design and Manufacture, pages 255–267. Springer-Verlag, 1998.

    Google Scholar 

  25. Kalayanmoy Deb and Ram Bhusan Agrawal. Simulated binary crossover for continuous search space. Complex System, 9(2):115–148, 1995.

    MathSciNet  MATH  Google Scholar 

  26. Kalyanmoy Deb. Multi-objective evolutionary algorithms: Introducing bias among Pareto-optimal solutions. KanGAL report 99002, Indian Institute of Technology, Kanpur, India, 1999.

    Google Scholar 

  27. Kalyanmoy Deb. Multi-objective evolutionary algorithms: Introducing bias among Pareto-optimal solutions. In Ashish Ghosh and Shigeyoshi Tsutsui, editors, Advances in Evolutionary Computing. Theory and Applications, pages 263–292. Springer, Berlin, 2003.

    Google Scholar 

  28. Kalyanmoy Deb and Hans-Georg Beyer. Self-adaptive genetic algorithms with simulated binary crossover. Technical Report CI-61/99, Department of Computer Science, University of Dortmund, Germany, March 1999.

    Google Scholar 

  29. Nicole Drechsler, Rolf Drechsler, and Bernd Becker. Multi-objective optimization in evolutionary algorithms using satisfiability classes. In Bernd Reusch, editor, Computational Intelligence, Theory and Applications, International Conference, 6th Fuzzy Days, Dortmund, Germany, May 25–28, 1999, Proceedings, volume 1625 of Lecture Notes in Computer Science, pages 108–117. Springer, 1999.

    Google Scholar 

  30. Nicole Drechsler, Rolf Drechsler, and Bernd Becker. Multi-objective optimisation based on relation favour. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello, and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 154–166. SpringerVerlag. Lecture Notes in Computer Science No. 1993, 2001.

    Chapter  Google Scholar 

  31. Francis Ysidro Edgeworth. Mathematical Physics. P. Keagan, London, England, 1881.

    Google Scholar 

  32. Günter Fandel and Tomas Gal, editors. Proceedings of the Third Conference on Multiple Criteria Decision Making Theory and Application, number 177 in Lecture Notes in Economics and Mathematical Systems, Hagen/Königswinter, West Germany, August 1979. Springer Verlag Berlin Heidelberg.

    Google Scholar 

  33. János Fodor and Marc Roubens. Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.

    Book  MATH  Google Scholar 

  34. Michael P. Fourman. Compaction of symbolic layout using genetic algorithms. In John J. Grefenstette, editor, Proceedings of the First International Conference on Genetic Algorithms, pages 141–153, 1985.

    Google Scholar 

  35. Ashok K. Goel. Design, analogy and creativity. IEEE Expert, Intelligent Systems & Their Applications, 12(3):62–70, 1997.

    Google Scholar 

  36. Garrison W. Greenwood, Xaobo (Sharon) Hu, and Joseph G. D’Ambrosio. Fitness functions for multiple objective optimization problems: Combining preferences with Pareto ranking. In Richard K. Belew and Michael D. Vose, editors, Foundations of Genetic Algorithms 4 (FOGA’96), pages 437–455. Morgan Kaufmann, San Francisco, California, 1996.

    Google Scholar 

  37. Bengt Hannson. Preference Logic: Philosophical Foundations and Applications in the Philosophy of Science. Lund, 1970.

    Google Scholar 

  38. Evan J. Hughes. Multi-objective probabilistic selection evolutionary algorithm. Technical Report DAPS/EJH/56/2000, Department of Aerospace, Power, & Sensors, Cranfield University, RMCS, Shrivenham, UK, SN6 8LA, September 2000.

    Google Scholar 

  39. Evan J. Hughes. Constraint handling with uncertain and noisy multi-objective evolution. In Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001), volume 2, pages 963–970, Piscataway, New Jersey, May 2001. IEEE Service Center.

    Google Scholar 

  40. John C. Hull. Options, Futures, and Other Derivatives. Finance Series. Prentice Hall, Upper Saddle River, New Jersey, 5th edition, 2003.

    MATH  Google Scholar 

  41. Ching-Lai Hwang and Abu Syed Md. Masud. Multiple Objective Decision Making — Methods and Applications. Number 164 in Lecture Notes in Economics and Mathematical Systems. Springer Verlag, Berlin, 1979.

    Book  MATH  Google Scholar 

  42. Nicholas R. Jennings and Michael J. Wooldridge, editors. Agent Technology: Foundations, Applications and Markets. Springer, 1998.

    MATH  Google Scholar 

  43. Ralph L. Keeney. Multidimensional utility functions: Theory, assessment and application. Technical Report TR-043, Operations Research Center, MIT, Cambridge, MA, USA, October 1969.

    Google Scholar 

  44. Ralph L. Keeney, Howard Raiffa, and Richard F. Meyer. Decisions with Multiple Objectives: Preferences and Value Tradeoffs. John Wiley & Sons, 1976.

    Google Scholar 

  45. J. G. Lin. Maximal vectors and multi-objective optimization. Journal of Optimization Theory and Application, 18(1):41–64, 1976.

    Article  MATH  Google Scholar 

  46. R. Duncan Luce. Semiorders and a theory of utility discrimination. Econometrica, 24:178–191, 1956.

    Article  MathSciNet  MATH  Google Scholar 

  47. Thierry Marchant, Denis Bouyssou, Patrice Perny, Marc Pirlot, Alexis Tsoukias, and Philippe Vincke. Choosing on the basis of several viewpoints: The example of voting. Technical Report 99/03, SMG, Université Libre de Bruxelles, Belgium, 1999. http://www.smg.ulb.ac.be/Preprints/FullText/Marchant99_03.ps.gz.

    Google Scholar 

  48. Richard M. Martin. Intension and Decision. A Philosophical Study. PrenticeHall Inc., 1963.

    Google Scholar 

  49. Heinz Mühlenbein and Dirk Schlierkamp-Voosen. The science of breeding and its application to the breeder genetic algorithm (BGA). Evolutionary Computation, 1(4) :335–360, 1993.

    Article  Google Scholar 

  50. Giuseppe Munda. Multiple-criteria decision aid: Some epistemological considerations. Journal of Multi-Criteria Decision Analysis, 2:41–55, 1993.

    Article  MATH  Google Scholar 

  51. Jan Paredis. Coevolutionary algorithms. In Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors, The Handbook of Evolutionary Computation, 1st supplement, pages 225–238. Institute of Physics Publishing and Oxford University Press, 1998.

    Google Scholar 

  52. Vilfredo Pareto. Cours D ’Economie Politique, volume I and II. F. Rouge, Lausanne, 1896.

    Google Scholar 

  53. Ian C. Parmee, Dragan Cvetković, Christopher R. Bonham, and Dominic Mitchell. Towards interactive evolutionary design systems for the satisfaction of multiple and changing objectives. In European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2000), Barcelona, Spain, September 2000.

    Google Scholar 

  54. Ian C. Parmee, Dragan Cvetković, Andrew H. Watson, and Christopher R. Bonham. Multi-objective satisfaction within an interactive evolutionary design environment. Evolutionary Computation, 8(2):197–222, 2000.

    Article  Google Scholar 

  55. Ian C. Parmee and Andrew H. Watson. Preliminary airframe design using co-evolutionary multiobjective genetic algorithms. In W. Banzhaf and J. Daida et al., editors, GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, pages 1657–1665, Orlando, Florida, USA, July 1999. Morgan Kaufmann.

    Google Scholar 

  56. Judy Pearsall and Bill Trumble, editors. The Oxford English Reference Dictionary. Oxford University Press, Oxford, UK, 2nd edition, 1996.

    Google Scholar 

  57. Mitchell A. Potter and Kenneth A. De Jong. A cooperative coevolutionary approach to function optimization. In Yuval Davidor, Hans-Paul Schwefel, and Reinhard Männer, editors, Proceedings from the Third Parallel Problem Solving from Nature-PPSN III, Lecture Notes in Computer Science, Volume 866, pages 249–257, Jerusalem, Israel, October 1994. Springer-Verlag.

    Chapter  Google Scholar 

  58. Graham Priest, Richard Routley, and Jean Norman, editors. Paraconsistent Logic. Essays on the Inconsistent. Philosophia Verlag, München, Germany, 1989.

    MATH  Google Scholar 

  59. Howard Raiffa. Preferences for multi-attributed alternatives. Technical Report RM-5868-DOT/RC, RAND Corporation, Santa Monica, CA, USA, 1969.

    Google Scholar 

  60. Nicholas Recher. Applied logic. In Encyclopædia Britannica, Macropædia, Vol. 11, pages 28–38. Encyclopædia Britannica Inc, 15th edition, 1981.

    Google Scholar 

  61. Christopher D. Rosin and Richard K. Belew. New methods for competitive coevolution. Evolutionary Computation, 5(1):1–29, 1996.

    Article  Google Scholar 

  62. Bernard Roy. Decision-aid and decision-making. In Carlos A. Bana e Costa, editor, Readings in Multiple Criteria Decision Aid, pages 17–35. Springer-Verlag, Berlin, 1990.

    Chapter  Google Scholar 

  63. Bernard Roy and Denis Bouyssou. Aide Multicritère à la Décision: Méthodes et Cas. Economica, Paris, France, 1993.

    MATH  Google Scholar 

  64. Tuomas W. Sandholm. Distributed rational decision making. In Gerhard Weiss, editor, Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, pages 201–258. MIT press, 1999. http://www.t-2.cs.cmu.edu/sandholm/rational.ps.

    Google Scholar 

  65. J. David Schaffer. Some Experiments in Machine Learning using Vector Evaluated Genetic Algorithm. PhD thesis, Deparment of Electrical Engineering, Vanderbilt University, Nashville, 1984. TCGA file No. 00314.

    Google Scholar 

  66. J. David Schaffer. Multiple objective optimization with vector evaluated genetic algorithms. In John J. Grefenstette, editor, Proceedings of the First International Conference on Genetic Algorithms, pages 93–100. Lawrance Erlbaum Associates, 1985.

    Google Scholar 

  67. Frank Schmiedle, Nicole Drechsler, Daniel Große, and Rolf Drechsler. Priorities in multi-objective optimization for genetic programming. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001), pages 129–136. Morgan Kaufmann, 2001.

    Google Scholar 

  68. Hans-Paul Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, New York, 1995.

    Google Scholar 

  69. Michael J. Scott and Erik K. Antonsson. Arrow’s theorem and engineering design decision making. Research in Engineering Design, 11(4) :218–228, 1999.

    Article  Google Scholar 

  70. Pratyush Sen and Jian-Bo Yang. Multiple Criteria Decision Support in Engineering Design. Springer-Verlag, London, 1998.

    Book  Google Scholar 

  71. Weiming Shen, Douglas H. Norrie, and Jean-Paul A. Barthès. Multi-Agent Systems for Concurrent Intelligent Design and Manufacturing. Taylor & Francis, London, UK, 2000.

    Book  Google Scholar 

  72. Wolfram Stadler. Fundamentals of multicriteria optimization. In W. Stadler, editor, Multicriteria Optimization in Engineering and the Sciences, pages 1–25. Plenum Press, New York, NY, USA, 1988.

    Google Scholar 

  73. K. C. Tan, T. H. Lee, and E. F. Khor. Evolutionary algorithms with goal and priority information for multi-objective optimization. In 1999 Congress on Evolutionary Computation, pages 106–113, Washington, D.C., July 1999. IEEE Service Center.

    Google Scholar 

  74. Gordon Tullock. Towards a Mathematics of Politics. University of Michigan Press, 1967.

    Google Scholar 

  75. Amos Tversky. Intransitivity of preferences. Psychological Review, 76(1) :31–48, January 1969.

    Article  Google Scholar 

  76. Philippe Vincke. Multicriteria Decision-Aid. John Wiley & Sons, Chichester, England, 1992.

    Google Scholar 

  77. Philippe Vincke. P, Q, I, J preference structures. Technical Report 2000/05, SMG, Université Libre de Bruxelles, Belgium, 2000. http://www.smg.ulb.ac.be/Preprints/FullText/Vincke00_05.ps.gz.

    Google Scholar 

  78. Philippe Vincke. Preferences and numbers. In A. Colorni, M. Paruccini, and B. Roy, editors, A-MCD-A — Aide Multi Critère à la Décision — Multiple Criteria Decision Aiding, pages 343–354. Joint Research Center, The European Commission, 2001.

    Google Scholar 

  79. John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behaviour. Princeton University Press, Princeton, New Jersey, USA, 2nd edition, 1947.

    Google Scholar 

  80. Georg Henrik von Wright. The logic of preference. An essay. Edinburgh, 1963.

    Google Scholar 

  81. Georg Henrik von Wright. The logic of preference reconsidered. Theory and Decision, 3:140–167, 1972.

    Article  MATH  Google Scholar 

  82. Eric Webb. MINICAPS — a simplified version of CAPS for use as a research tool. Unclassified Report BAe-WOA-RP-GEN-11313, British Aerospace, Warton, UK, July 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cvetković, D., Coello, C.A.C. (2005). Human Preferences and their Applications in Evolutionary Multi—Objective Optimization. In: Jin, Y. (eds) Knowledge Incorporation in Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44511-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44511-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06174-5

  • Online ISBN: 978-3-540-44511-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics