Skip to main content

Local Search Direction for Multi-Objective Optimization Using Memetic EMO Algorithms

  • Chapter
Knowledge Incorporation in Evolutionary Computation

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 167))

Summary

In this chapter, we generalize dominance relation-based replacement rules in multiobjective optimization. Ordinary two replacement rules based on the dominance relation are usually employed in a local search for multiobjective optimization. One is to replace a current solution with a solution which dominates it. The other is to replace the solution with a solution which is not dominated by it. The movable area in the local search with the first rule is very small when the number of objectives is large. On the other hand, it is too huge to move efficiently with the latter. We generalize these dominance relation-based rules with respect to the number of improved objectives in a candidate solution for local search. We propose a local search unit with the generalized replacement rule, and apply it to existing EMO algorithms. Its effectiveness is shown on knapsack problems and function optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schaffer, J. D. (1995) Multiple objective optimization with vector evaluated genetic algorithms, Proc. of 1st Int’l Conf. on Genetic Algorithms and Their Applications, 93–100.

    Google Scholar 

  2. Deb, K. (2001) Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley and Sons.

    MATH  Google Scholar 

  3. Knowles, J. D. and Corne, D. W. (1999) The Pareto archived evolution strategy: A new baseline algorithm for Pareto multiobjective optimization, Proc. of 1999 Congress on Evolutionary Computation, 98–105.

    Google Scholar 

  4. Zitzler, E. and Thiele, L. (1999) Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Trans. on Evolutionary Computation, Vol. 3, No. 4, 257–271.

    Article  Google Scholar 

  5. Knowles, J. D. and Corne, D. W. (2000) Approximating the nondominated front using Pareto archived evolution strategy, Evolutionary Computation, Vol. 8, No. 2, 149–172.

    Article  Google Scholar 

  6. Zitzler, E., Deb, K., and Thiele, L. (2000) Comparison of Multiobjective Evolutionary Algorithms: Empirical Results, Evolutionary Computation, Vol. 8, No. 2, 173–195.

    Article  Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. on Evolutionary Computation, Vol. 6, No. 2, 182–197.

    Article  Google Scholar 

  8. Merz, P. and Freisleben, B. (1997) Genetic local search for the TSP: New results, Proc. of 4th IEEE Int’l Conf. on Evolutionary Computation, 159–164.

    Google Scholar 

  9. Krasnogor, N. and Smith, J. (2000) A memetic algorithm with self-adaptive local search: TSP as a case study, Proc. of 2000 Genetic and Evolutionary Computation Conf., 987–994.

    Google Scholar 

  10. Moscato, P. (1999) Memetic algorithms: A short introduction, in D. Corne, F. Glover, and M. Dorigo (eds.), New Ideas in Optimization, McGraw-Hill, 219–234, Maidenhead.

    Google Scholar 

  11. Hart, W. E., Krasnogor, N., and Smith, J., Eds. (2000) First Workshop on Memetic Algorithms (WOMA I), in Proc. of 2000 Genetic and Evolutionary Computation Conf. Workshop Program, 95–130.

    Google Scholar 

  12. Hart, W. E., Krasnogor, N., and Smith, J., Eds. (2001) Second Workshop on Memetic Algorithms (WOMA II), in Proc. of 2001 Genetic and Evolutionary Computation Conf. Workshop Program, 137–179.

    Google Scholar 

  13. Hart, W. E., Krasnogor, N., and Smith, J., Eds. (2002) Proc. of Third Workshop on Memetic Algorithms (WOMA III).

    Google Scholar 

  14. Merz, P., Hart, W. E., Krasnogor, N., and Smith, J., Eds (2003) Fourth Workshop on Memetic Algorithms (WOMA IV), in Proc. of 2003 Genetic and Evolutionary Computation Conf. Workshop Program, 215–239.

    Google Scholar 

  15. Ishibuchi, H. and Murata, T. (1996) Multi-objective genetic local search algorithm, Proc. of 3th IEEE Int’l Conf. on Evolutionary Computation, 119–124.

    Google Scholar 

  16. Ishibuchi, H. and Murata, T. (1998) A multi-objective genetic local search algorithm and its application to flowshop scheduling, IEEE Trans. on Systems, Man, and Cybernetics — Part C: Applications and Reviews, Vol. 28, No. 3, 392–403.

    Article  Google Scholar 

  17. Jaszkiewicz, A. (2002) Genetic local search for multi-objective combinatorial optimization, European Journal of Operational Research, Vol. 137, No. 1, 5071.

    Article  MathSciNet  Google Scholar 

  18. Knowles, J. D. and Corne, D. W. (2000) M-PAES: A memetic algorithm for multiobjective optimization, Proc. of 2000 Congress on Evolutionary Computation, 325–332.

    Google Scholar 

  19. Knowles, J. D. and Corne, D. W. (2000) A comparison of diverse approaches to memetic multiobjective combinatorial optimization, Proc. of 2000 Genetic and Evolutionary Computation Conf. Workshop Program, 103–108.

    Google Scholar 

  20. Murata, T., Nozawa, H., Tsujimura, M., and Ishibuchi, H. (2002) Effect of local search on the performance of cellular multi-objective genetic algorithms for designing fuzzy rule-based classification systems, Proc. of the 2002 Congress on Evolutionary Computation, 663–668.

    Google Scholar 

  21. Ishibuchi, H., Yoshida, T., and Murata, T. (2002) Selection of initial solutions for local search in multi-objective genetic local search, Proc. of 2002 Congress on Evolutionary Computation, 663–668.

    Google Scholar 

  22. Deb, K. and Goel, T. (2001) A hybrid multi-objective evolutionary approach to engineering shape design, Proc. of First International Conference on Evolutionary Multi-Criterion Optimization, 385–399.

    Google Scholar 

  23. Talbi, E., Rahoual, M., Mabed, H., and Dhaenens, C. (2001) A hybrid evolutionary approach for multicriteria optimization problems: Application to the flow shop, Proc. of First International Conference on Evolutionary Multi-Criterion Optimization, 416–428.

    Google Scholar 

  24. Murata, T., Nozawa, H., Ishibuchi, H., and Gen, M. (2003) Modification of local search directions for non-dominated solutions in cellular multiobjective genetic algorithms for pattern classification problems, Proc. of Second International Conference on Evolutionary Multi-Criterion Optimization, 593–607.

    Google Scholar 

  25. Ishibuchi, H., Yoshida, T., and Murata, T. (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling, IEEE Trans. on Evolutionary Computation, Vol. 7, No. 2, 204–223.

    Article  Google Scholar 

  26. Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2002) Scalable multiobjective optimization test problems, Proc. of the 2002 Congress on Evolutionary Computation, 825–830.

    Google Scholar 

  27. Ikeda, K., Kita, H., and Kobayashi, S. (2001) Failure of Pareto-based MOEAs: Does non-dominated really mean near to optimal?, Proc. of the 2001 Congress on Evolutionary Computation, 957–962.

    Google Scholar 

  28. Laumanns, M., Thiele, L., Deb, K., and Zitzler, E. (2002) Combining convergence and diversity in evolutionary multiobjective optimization, Evolutionary Computation, Vol. 10, No. 3, 263–282.

    Article  Google Scholar 

  29. Forina, M., and Amato, P. (2003) Fuzzy optimality and evolutionary multiobjective optimization, Proc. of Second International Conference on Evolutionary Multi-Criterion Optimization, 58–72.

    Google Scholar 

  30. Zitzler, E. (1999) Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, Ph. D. Thesis, Swiss Federal Institute of Technology (ETH).

    Google Scholar 

  31. Schott, J. R. (1995) Fault Tolerant Design Using Single and Multi-Criteria Genetic Algorithms, Master’s Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  32. Fonseca, C. M. and Fleming, P. J. (1996) On the performance assessment and comparison of stochastic multiobjective optimizers, Proc. of Parallel Problem Solving from NatureIV , 584–593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murata, T., Kaige, S., Ishibuchi, H. (2005). Local Search Direction for Multi-Objective Optimization Using Memetic EMO Algorithms. In: Jin, Y. (eds) Knowledge Incorporation in Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44511-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44511-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06174-5

  • Online ISBN: 978-3-540-44511-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics