Skip to main content

An Evolutionary Algorithm with Tabu Restriction and Heuristic Reasoning for Multiobjective Optimization

  • Chapter
Book cover Knowledge Incorporation in Evolutionary Computation

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 167))

  • 1137 Accesses

Summary

An exploratory multiobjective evolutionary algorithm (EMOEA) that integrates the features of tabu search and evolutionary algorithm for multiobjective (MO) optimization is presented in this chapter. The method incorporates the tabu restriction in individual examination and preservation in order to maintain the search diversity in evolutionary MO optimization, which subsequently helps to prevent the search from trapping in local optima as well as to promote the evolution towards the global trade-offs concurrently. The features of the algorithm are examined based upon three benchmark problems. Experimental results show that EMOEA performs well in searching and distributing nondominated solutions along the trade-offs uniformly, and offers a competitive behavior to escape from local optima in a noisy environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Areibi S, Vannelli A (1993). Circuit partitioning using a Tabu search approach. IEEE International Symposium on Circuits and Systems, vol. 3, pp. 1643–1646

    Google Scholar 

  2. Beyer D A, Ogier R G (1991) . Tabu learning: a neural network search method for solving nonconvex optimization problems. IEEE International Joint Conference on Neural Networks, Vol. 2, pp. 953–961

    Google Scholar 

  3. Braglia M, Melloni R (1995). Tabu search for the single machine sequencing problem with ready times. INRIA/IEEE Symposium on Emerging Technologies and Factory Automation, vol. 2, pp. 395–403

    Google Scholar 

  4. Coello Coello C A (1996). An Empirical Study of Evolutionary Techniques for Multiobjective Optimization in Engineering Design. Ph.D. Thesis, Department of Computer Science, Tulane University, New Orleans, LA

    Google Scholar 

  5. Coello Coello C A, Van Veldhuizen D A, Lamont, G B (2002). Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers

    Book  MATH  Google Scholar 

  6. Cvetkovic D, Parmee I C (2002). Preferences and their application in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 42–57

    Article  Google Scholar 

  7. De Falco I, Del Balio R, Tarantino E, Vaccaro R (1994). Improving search by incorporating evolution principles in parallel Tabu Search. IEEE Proceedings of the Congress on Evolutionary Computation, vol. 2, pp. 823–828

    Google Scholar 

  8. Deb K (1999). Multi-objective genetic algorithms: Problem difficulties and construction of test problem. Journal of Evolutionary Computation, The MIT Press, vol. 7, no. 3, pp 205–230

    Article  Google Scholar 

  9. Deb K (2001). Multi-Objective Optimization using Evolutionary Algorithms. Chichester, John Wiley & Sons, Ltd

    MATH  Google Scholar 

  10. Deb K, Pratap A, Agarwal S, Meyarivan T (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197

    Article  Google Scholar 

  11. Fonseca C M, Fleming P J (1995) . Multi-objective genetic algorithm made easy: Selection, sharing and mating restriction. International Conference on Genetic Algorithm in Engineering Systems: Innovations and Application, UK, pp. 12–14

    Google Scholar 

  12. Fonseca C M, Fleming P J (1998). Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part I: A unified Formulation. IEEE Transactions on System, Man, and Cybernetics-Part A: System and Humans, vol. 28, no. 1. pp. 26–37

    Article  Google Scholar 

  13. Garrison W G, Hu X S, D’Ambrosio J G (1997). Fitness functions for multiobjective optimization problems: Combining preferences with Pareto rankings. In Belew, R. K., and Vose, M. D., eds., Foundations of Genetic Algorithms 4, Morgan Kaufmann, San Mateo, California, pp. 437–455

    Google Scholar 

  14. Grimm, L G (1993). Statistical Application for Behavioral Sciences. J. Wiley, New York.

    Google Scholar 

  15. Horn J, Nafpliotis N, Goldberg D E (1994). A niched Pareto genetic algorithm for multiobjective optimization. Proceeding of First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol. 1, pp. 82–87

    Article  Google Scholar 

  16. Khor E F, Tan K C, Lee T H (2001). Tabu-based exploratory evolutionary algorithm for effective multi-objective optimization, Springer-Verlag Lecture Notes in Computer Science, no. 1993, The First International Conference on Evolutionary Multi-Criteria Optimization (EMO’01), Zurich, Switzerland, pp. 344–358

    Chapter  Google Scholar 

  17. Kim H, Hayashi Y, Nara K. (1997). An algorithm for thermal unit maintenance scheduling through combined use of GA, SA and TS. IEEE Transactions on Power Systems, vol. 12, no. 1, pp. 329–335

    Article  Google Scholar 

  18. Knowles J D, Corne D W (2000) . Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation, MIT Press Journals, vol. 8, no. 2, pp. 149–172

    Google Scholar 

  19. Laumanns M, Rudolph G, Schwefel H P (1998). A Spatial Predator-Prey approach to multi-objective optimization: A preliminary study. In Eiben A E, Schoenauer M, Schwefel H P, eds., Parallel Problem Solving From Nature — PPSN V, Springer-Verlag, Amsterdam, Holland, pp. 241–249

    Chapter  Google Scholar 

  20. Mantawy A H, Abdel-Magid, Y L, Selim S Z (1999). Integrating genetic algorithms, tabu search, and simulated annealing for the unit commitment problem. IEEE Transactions on Power Systems, vol. 14, no. 3, pp. 829–836

    Article  Google Scholar 

  21. Richardson J T, Palmer M R, Liepins G, Hilliard M (1989). Some guidelines for genetic algorithms with penalty functions. In: Schaffer J D, ed., Proceedings of Third Int. Conf. on Genetic Algorithms, pp. 191–197

    Google Scholar 

  22. Schaffer J D, Caruana R A, Eshelman L J, Das R. (1989) . A study of control parameters affecting online performance of genetic algorithms for function optimization. Proceedings of Third International Conference on Genetic Algorithms, pp. 51–60

    Google Scholar 

  23. Srinivas N, Deb K. (1994) . Multiobjective optimization using non-dominated sorting in genetic algorithms. Evolutionary Computation, MIT Press Journals, vol. 2, no. 3, pp. 221–248

    Google Scholar 

  24. Tan K C, Lee T H, Khor E F (2002). Evolutionary algorithms for multiobjective optimization: performance assessments and comparisons. Artificial Intelligence Review, vol. 17, no. 4, pp. 251–290

    Article  MATH  Google Scholar 

  25. Tan K C, Khor E F, Lee T H, Yang Y J (2003). A tabu-based exploratory evolutionary algorithm for multiobjective optimization’, Artificial Intelligence Review, vol. 19, issue 3, pp. 231–260

    Article  Google Scholar 

  26. The Math Works, Inc. (1998). Using MATLAB, The Math Works Inc., Version 5

    Google Scholar 

  27. Veldhuizen D A V, Lamont G B (1998). Evolutionary computation and convergence to a Pareto front. In: Koza J R, ed., Late Breaking Paper at the Genetic Programming 1998 Conference, Stanford University Bookstore, Stanford University, California, pp. 221–228

    Google Scholar 

  28. Veldhuizen D A V, Lamont G B (1999). Multiobjective evolutionary algorithm test suites. Symposium on Applied Computing, San Antonio, Texas, pp. 351–357

    Google Scholar 

  29. Yagiura M, Ibaraki T. (1996). Metaheuristics as robust and simple optimization tools. IEEE Proceedings of the Congress on Evolutionary Computation, pp. 541–546

    Google Scholar 

  30. Zitzler E, Thiele L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, vol. 3, no. 4, pp.257–271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khor, E.F., Tan, K.C., Yang, Y.J. (2005). An Evolutionary Algorithm with Tabu Restriction and Heuristic Reasoning for Multiobjective Optimization. In: Jin, Y. (eds) Knowledge Incorporation in Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44511-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44511-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06174-5

  • Online ISBN: 978-3-540-44511-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics