Skip to main content

Knowledge-Based Evolutionary Search for Inductive Concept Learning

  • Chapter
Knowledge Incorporation in Evolutionary Computation

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 167))

Summary

This chapter provides a short overview of a GA-based system for inductive concept learning (in a fragment of first-order logic) . The described system exploits problem—specific knowledge by means of ad-hoc selection, mutation operators, and optimization applied to the single individuals. We focus on the experimental analysis of selection operators incorporating problem knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jesús S. Aguilar-Ruiz, José C. Riquelme, and Carmelo Del Valle. Improving the evolutionary coding for machine learning tasks. In European Concefence on Artificial Intelligence, ECAI’02, pages 173–177, Lyon, France, 2002. IOS Press.

    Google Scholar 

  2. J.S. Aguilar-Ruiz, J.C. Riquelme, and M. Toro. Evolutionary learning of hierarchical decision rules. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 33(2):324–331, 2003.

    Article  Google Scholar 

  3. C. Anglano, A. Giordana, G. Lo Bello, and L. Saitta. An experimental evaluation of coevolutive concept learning. In Proc. 15th International Conf. on Machine Learning, pages 19–27. Morgan Kaufmann, San Francisco. CA. 1998.

    Google Scholar 

  4. S. Augier, G. Venturini, and Y. Kodratoff. Learning first order logic rules with a genetic algorithm. In Usama M. Fayyad and Ramasamy Uthurusamy, editors, The First International Conference on Knowledge Discovery and Data Mining, pages 21–26, Montreal, Canada, 20–21 1995. AAAI Press.

    Google Scholar 

  5. Jaume Bacardit and Josep M. Garrell. Evolution of multi-adaptive discretization intervals for A rule-based genetic learning system. In Proceedings of the VIII Iberoamerican Conference on Artificial Intelligence (IBERAMIA’2002), pages 350–360. LNAI vol. 2527, Springer, 2002.

    Google Scholar 

  6. Jaume Bacardit and Josep Maria Garrell. Evolving multiple discretizations with adaptive intervals for a Pittsburgh rule-based learning classifier system. In Genetic and Evolutionary Computation — GECCO-2003, volume 2724 of LNCS, pages 1818–1831, Chicago, 12–16 July 2003. Springer-Verlag.

    Chapter  Google Scholar 

  7. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

    Google Scholar 

  8. K.A. De Jong. An Analysis of the Behaviour of a Class of Genetic Adaptive Systems. PhD thesis, Dept. of Computer and Communication Sciences, University of Michigan, Ann Arbor, MI, 1975.

    Google Scholar 

  9. A.K. Debnath, R.L. Lopez de Compadre, G. Debnath, A.J. Schusterman, and C. Hansch. Structure-Activity Relationship of Mutagenic Aromatic and Heteroaromatic Nitro Compounds. Correlation with molecular orbital energies and hydrophobicity. Journal of Medical Chemistry, 34(2):786–797, 1991.

    Article  Google Scholar 

  10. F. Divina and E. Marchiori. Evolutionary concept learning. In GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pages 343–350, New York, 9–13 July 2002. Morgan Kaufmann Publishers.

    Google Scholar 

  11. F. Divina and E. Marchiori. Handling continuous attributes in an evolutionary inductive learner. Technical Report IR-AI-005, Vrije Universiteit Amsterdam, 2003.

    Google Scholar 

  12. Federico Divina, Maarten Keijzer, and Elena Marchiori. Non-universal suffrage selection operators favor population diversity in genetic algorithms. In Benelearn 2002: Proceedings of the 12th Belgian-Dutch Conference on Machine Learning (Technical report UU-CS-2002–046), pages 23–30, Utrecht, The Netherlands, 4 December 2002.

    Google Scholar 

  13. Federico Divina, Maarten Keijzer, and Elena Marchiori. Evolutionary concept learning with constraints for numerical attributes. In BNAIC 2003: Proceedings of the Belgian-Dutch Conference on Artificial Intelligence, pages 107–114, Nijmegen, The Netherlands, 23–24 October 2003.

    Google Scholar 

  14. S. Džeroski, N. Jacobs, M. Molina, and C. Moure. ILP experiments in detecting traffic problems. In European Conference on Machine Learning, pages 61–66, 1998.

    Google Scholar 

  15. Saso Dzeroski, Nico Jacobs, Martin Molina, Carlos Moure, Stephen Muggleton, and Wim Van Laer. Detecting traffic problems with ILP. In International Workshop on Inductive Logic Programming, pages 281–290, 1998.

    Chapter  Google Scholar 

  16. AA Freitas. Data Mining and Knowledge Discovery with Evolutionary Algorithms. Spinger-Verlag, Berlin, unknown 2002.

    MATH  Google Scholar 

  17. A. Giordana and F. Neri. Search-intensive concept induction. Evolutionary Computation, 3(4):375–416, 1996.

    Article  Google Scholar 

  18. Raúl Giráldez, Jesús S. Aguilar-Ruiz, and José C. Riquelme. Natural coding: A more efficient representation for evolutionary learning. In Genetic and Evolutionary Computation — GECCO-2003, volume 2723 of LNCS, pages 979–990, Chicago, 12–16 July 2003. Springer-Verlag.

    Chapter  Google Scholar 

  19. David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, 1989.

    Google Scholar 

  20. David E. Goldberg and James Richardson. Genetic algorithms with sharing for multimodal function optimization. In Proc. of 2nd Int’l Conf. on Genetic Algorithms, pages 41–49. Morgan Kaufmann Publishers, 1987.

    Google Scholar 

  21. J. Hekanaho. DOGMA: a GA based relational learner. In D. Page, editor, Proceedings of the 8th International Conference on Inductive Logic Programming, LNAI 1446, pages 205–214. Springer Verlag, 1998.

    Chapter  Google Scholar 

  22. Jukka Hekanaho. Background knowledge in GA-based concept learning. In International Conference on Machine Learning, pages 234–242, 1996.

    Google Scholar 

  23. C.Z. Janikow. A knowledge intensive genetic algorithm for supervised learning. Machine Learning, 13:198–228, 1993.

    Article  Google Scholar 

  24. K.A. De Jong, W.M. Spears, and D.F. Gordon. Using Genetic Algorithms for Concept Learning. Machine Learning, 13(1/2):155–188, 1993.

    Google Scholar 

  25. C. J. Kennedy and C. Giraud-Carrier. A depth controlling strategy for strongly typed evolutionary programming. In GECCO 1999: Proceedings of the First Annual Conference, pages 1–6. Morgan Kauffman, July 1999.

    Google Scholar 

  26. M. Kubat, I. Bratko, and R.S. Michalski. A review of Machine Learning Methods. In R.S. Michalski, I. Bratko, and M. Kubat, editors, Machine Learning and Data Mining. John Wiley and Sons Ltd., Chichester, 1998.

    Google Scholar 

  27. Wojciech Kwedlo and Marek Kretowski. An evolutionary algorithm using multivariate discretization for decision rule induction. In Principles of Data Mining and Knowledge Discovery, pages 392–397, 1999.

    Chapter  Google Scholar 

  28. K.S. Leung and M.L. Wong. Genetic logic programming and applications. IEEE Expert, 10(5):68–76, 1995.

    Article  Google Scholar 

  29. T.M. Mitchell. Generalization as search. Artificial Intelligence, 18:203–226, 1982.

    Article  MathSciNet  Google Scholar 

  30. T.M. Mitchell. Machine Learning. Series in Computer Science. McGraw-Hill, 1997.

    Google Scholar 

  31. S. Muggleton. Inductive logic programming: issues, results and the challenge of learning language in logic. Artificial Intelligence, 114:283–296, 1999.

    Article  MATH  Google Scholar 

  32. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal of Logic Programming, 19–20:669–679, 1994.

    Article  Google Scholar 

  33. Filippo Neri and Lorenza Saitta. Analysis of genetic algorithms evolution under pure selection. In Proceedings of the Sixth International Conference on Genetic Algorithms, pages 32–39. Morgan Kaufmann, San Francisco, CA, 1995.

    Google Scholar 

  34. Man Leung Wong and Kwong Sak Leung. Inducing logic programs with genetic algorithms: The genetic logic programming system. In IEEE Expert 10(5), pages 68–76, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Divina, F., Marchiori, E. (2005). Knowledge-Based Evolutionary Search for Inductive Concept Learning. In: Jin, Y. (eds) Knowledge Incorporation in Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44511-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44511-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06174-5

  • Online ISBN: 978-3-540-44511-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics