Advertisement

Traps for Rare Isotopes

  • Georg Bollen
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 651)

Abstract

Ion traps are widely used in fundamental and applied research. Over the past decade they have also gained significance as tools in experimental nuclear physics. They are used for precision mass measurements, which are important for a better understanding of nuclear structure and the nuclear synthesis of the elements, as well as for precise tests of fundamental interactions. They offer the possibility of textbook-like decay studies, where the nucleus decays in free space. Furthermore, stored ions can be cooled and manipulated in many ways. This is the key to improving the quality of rare isotope beams and for tailoring the beam properties to the needs of the experiments.

Keywords

Cyclotron Frequency Radial Motion Paul Trap Rare Isotope Cyclotron Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Trapped Charged Particles and Related Fundamental Physics, Nobel Symposium at Lysekil, Sweden, August 18-26, 1994 , ed by I. Bergström, C. Carlberg, Phys. Scripta T 59 (1995)Google Scholar
  2. 2. Trapped Charged Particles and Fundamental Physics, International Conference at Monterey, CA, USA, August 31 -September 4, 1998 , ed. by D.H.E. Dubin, D. Schneider (AIP Conf. Proc. (USA) 457, 1999)Google Scholar
  3. 3. Trapped Charged Particles and Fundamental Interactions, International Conference at Wildbad-Kreuth, Germany, August 26 - 30, 2002, ed. by M. Groß, D. Habs, W. Lange, U. Schramm, H. Walther, Jour. Phys. B 36(3) and 36(5), (2002)Google Scholar
  4. 4. K. Enders et al., Phys. Rev. A 56, 265 (1997)Google Scholar
  5. 5. G. Werth: Phys. Scripta T 72, 42 (1997)Google Scholar
  6. 6. R.S. Van Dyck Jr. et al.: Phys. Rev. Lett. 59, 26 (1987)CrossRefGoogle Scholar
  7. 7. V.W. Hughes, T. Kinoshita: Rev. Mod. Phys. 71, 133 (1999)CrossRefGoogle Scholar
  8. 8. H. Häffner et al.: Phys. Rev. Lett. 85, 5308 (2000)CrossRefGoogle Scholar
  9. 9. R.S. Van Dyck Jr. et al.: Bull. Am. Phys. Soc. 31, 244 (1986)Google Scholar
  10. 10. T. Beier et al.: Phys. Rev. Lett. 88, 011603 (2002)CrossRefGoogle Scholar
  11. 11. G. Gabrielse et al.: Phys. Rev. Lett. 82, 3198 (1999)CrossRefGoogle Scholar
  12. 12. F. DiFillipo et al.: Phys. Rev. Lett. 73, 1481 (1994)CrossRefGoogle Scholar
  13. 13. M.P. Bradley et al.: Phys. Rev. Lett. 83, 4510 (1999)CrossRefGoogle Scholar
  14. 14. C. Carlberg et al.: Phys. Rev. Lett. 83, 4506 (1999)CrossRefGoogle Scholar
  15. 15. E. Kugler: Hyperfine Interact. 129, 23 (2002)Google Scholar
  16. 16. M. Dombsky et al.: Nucl. Phys. A 701, 486c (2002)CrossRefGoogle Scholar
  17. 17. H. Penttilä et al.: Nucl. Instr. Meth. B 126, 213 (1997)Google Scholar
  18. 18. Kudryavtsev Y et al.: Nucl. Phys. A 701, 465c (2002)CrossRefGoogle Scholar
  19. 19. H.G. Dehmelt: Adv. At. Mol. Physics 3, 53 (1967)Google Scholar
  20. 20. N. Kjaergaard, M. Drewsen: Physics of Plasmas 8, 1371 (2001)CrossRefGoogle Scholar
  21. 21. N. Kjaergaard et al.: Phys. Rev. E. 66, 015401(R) (2002)CrossRefGoogle Scholar
  22. 22. L. Schweikhard et al.: Int. J. Mass Spectrom. Ion Processes, 141, 77 (1995)Google Scholar
  23. 23. G. Bollen et al.: J. Appl. Phys. 68, 4355 (1990)CrossRefGoogle Scholar
  24. 24. M. König et al.: Int. J. Mass Spec. Ion. Proc. 142, 95 (1995)CrossRefGoogle Scholar
  25. 25. G. Gräff et al.: Z. Phys. A 297, 35 (1980)Google Scholar
  26. 26. H.W. Ellis et al.: Atomic Data and Nuclear Data Tables 17, 178 (1976)Google Scholar
  27. 27. H.W. Ellis et al.: Atomic Data and Nuclear Data Tables 22, 179 (1978)Google Scholar
  28. 28. G. Savard et al.: Phys. Lett. A 158, 247 (1991)CrossRefGoogle Scholar
  29. 29. L.S. Brown, G. Gabrielse: Rev. Mod. Phys. 58, 233 (1986)CrossRefGoogle Scholar
  30. 30. K. Blaum et al.: Euro. Phys. J. A 15, 245 (2002)Google Scholar
  31. 31. A. Kellerbauer et al.: Euro. Phys. J. D 22, 53 (2003)Google Scholar
  32. 32. N. Severijns, Weak Interaction Studies by Precision Experiments in Nuclear Beta Decay, Lect. Notes Phys. 651, 339–381 (2004)Google Scholar
  33. 33. M. Beck et al.: Nucl. Instr. Meth. B 204, 521 (2003)Google Scholar
  34. 34. E. Liénard et al.: ‘Weak interaction studies using a Paul trap’. In: Proc. Int. Conf. on Nuclear Physics at Border Lines, Lipari, Italy, March 21 - 24, 2001, ed. by G. Fazio, G. Giardina, F.Hanappe, G. Imme, N. Rowley (World Scientific, Singapore, 2001)Google Scholar
  35. 35. G.P. Berg et al.: Nucl. Instr. Meth. B 204, 532 (2003)Google Scholar
  36. 36. L. Weissman et al.: Hyperfine Interactions 132, 531 (2001)CrossRefGoogle Scholar
  37. 37. F. Ames et al.: ‘REXTRAP, an ion buncher for REX-ISOLDE’. In: Exotic Nuclei and Atomic Masses ENAM 98, International Conference in Bellaire, MI, USA, 1998, ed. by B.M. Sherrill, D.J. Morrissey, C.N. Davids, (AIP Conf. Proc. 455, 1998) pp 927-932Google Scholar
  38. 38. G. Bollen, Nucl. Phys. A 616, 457c (1997)Google Scholar
  39. 39. R.B. Moore, G. Rouleau: J. Mod. Optics 39, 361 (1992)Google Scholar
  40. 40. H. Raimbault-Hartmann et al.: Nucl. Instr. Meth. B 126, 374 (1997)Google Scholar
  41. 41. F. Herfurth et al. Nucl. Instr. Meth. A 469, 254 (2001)Google Scholar
  42. 42. K.S. Sharma et al.: ‘Status of the Canadian Penning Trap Mass Spectrometer at the Argonne National Laboratory’. In: Exotic Nuclei and Atomic Masses ENAM 98, International Conference in Bellaire, MI, USA, 1998, ed. by B.M. Sherrill, D.J. Morrissey, C.N. Davids, (AIP Conf. Proc. 455, 1998) pp 130-133Google Scholar
  43. 43. S. Fujitaka et al.: Nucl. Instr. Meth. B 126, 386 (1997)Google Scholar
  44. 44. A. Nieminen et al.: Nucl Instr. Meth. A 469, 244 (2001)Google Scholar
  45. 45. J. Billowes et al.: Nucl. Phys. A 682, 206c (2001)CrossRefGoogle Scholar
  46. 46. A. Nieminen et al.: Nucl. Instr. Meth. B 204, 563 (2003)Google Scholar
  47. 47. A. Jokinen et al.: Nucl. Instr. Meth. B 204, 86 (2003)Google Scholar
  48. 48. D. Habs et al.: Hyperfine Interactions 129, 43 (2000)CrossRefGoogle Scholar
  49. 49. O. Kester et al.: Nucl. Instr. Meth. B 204, 20 (2003)Google Scholar
  50. 50. J. Szerypo et al.: Acta. Phys. Pol. B 32, 985 (2001)Google Scholar
  51. 51. J. Dilling et al.: Hyperfine Interactions 127, 491 (2000)CrossRefGoogle Scholar
  52. 52. G. Sikler et al.: Nucl. Instr. Meth. B 204, 482 (2003)Google Scholar
  53. 53. G. Bollen et al.: Phys. Rev. C 46, R2140 (1992)Google Scholar
  54. 54. S. Schwarz et al.: Nucl. Phys. A 693, 533 (2001)CrossRefGoogle Scholar
  55. 55. J. Van Roosbroeck et al.: Phys. Rev. Lett. 92, 034313 (2004)Google Scholar
  56. 56. G. Bollen: Nucl. Phys. A 626, 297c (1997)CrossRefGoogle Scholar
  57. 57. W. Mittig et al.: Annu. Rev. Nucl. Sci. 47, 27 (1997)CrossRefGoogle Scholar
  58. 58. D. Lunney et al.: Rev. Mod. Phys. 75, 1021 (2003)CrossRefGoogle Scholar
  59. 59. S. Goriely, M. Arnould : Astron. Astro-phys. J. 312, 327 (1996)Google Scholar
  60. 60. K.L. Kratz et al.: Ap. J. 403, 2161 (1993)Google Scholar
  61. 61. B. Pfeiffer et al.: Nucl. Phys. A 693, 282 (2001)CrossRefGoogle Scholar
  62. 62. G. Bollen et al.: Phys. Rev. C 46, R2140 (1992)Google Scholar
  63. 63. G. Bollen et al.: Nucl. Instr. Meth. A 368 675 (1996)Google Scholar
  64. 64. S. Schwarz et al.: Nucl. Phys. A 693, 533 (2001)CrossRefGoogle Scholar
  65. 65. H. Schnatz et al.: Nucl. Instr. Meth. A 251, 17 (1986)Google Scholar
  66. 66. S. Becker et al.: Int. J. Mass Spectrom. Ion Proc. 99, 53 (1990)CrossRefGoogle Scholar
  67. 67. H. Stolzenberg H et al.: Phys. Rev. Lett. 65, 3104 (1990)CrossRefGoogle Scholar
  68. 68. G. Bollen et al.: Jour. Mod. Opt. 39, 257 (1992)Google Scholar
  69. 69. T. Otto et al.: Nucl. Phys. A 567, 281 (1994)CrossRefGoogle Scholar
  70. 70. D. Beck et al.: Nucl. Phys. A 626, 343c (1997)CrossRefGoogle Scholar
  71. 71. F. Ames et al.: Nucl. Phys. A 651, 3 (1999)CrossRefGoogle Scholar
  72. 72. D. Beck et al.: Eur. Phys. J. A 8, 307 (2000)CrossRefGoogle Scholar
  73. 73. J. Dilling et al.: Nucl. Phys. A 701, 520 (2002)CrossRefGoogle Scholar
  74. 74. F. Herfurth et al.: Phys. Rev. Lett. 87, 142501 (2001)CrossRefGoogle Scholar
  75. 75. K. Blaum et al.: Phys. Rev. Lett. 91, 260801 (2003)CrossRefGoogle Scholar
  76. 76. A. Kellerbauer et al: Phys.Rev. Lett., submitted (2004)Google Scholar
  77. 77. F. Herfurth et al.: Europ. Phys. Jour. 15, 17 (2001)Google Scholar
  78. 78. F. Herfurth et al.: J. Phys. B 36, 931 (2003)Google Scholar
  79. 79. J. Dilling et al.: Nucl. Instr. Meth. B 204, 492 (2003)Google Scholar
  80. 80. G. Savard et al.: Hyperfine Interactions 132, 223 (2001)Google Scholar
  81. 81. J. Clark et al.: Nucl. Instr. Meth. B 204, 487 (2003)Google Scholar
  82. 82. M. Wada et al.: Nucl. Instr. Meth. B 204, 570 (2003)Google Scholar
  83. 83. J. A. Clark et al.: Phys. Rev. Lett. 92, 192501 (2004)CrossRefGoogle Scholar
  84. 84. O. Engels et al.: Hyperfine Interactions 132, 505 (2000)Google Scholar
  85. 85. J. Szerypo et al: Nucl. Instr. Meth. B 204, 512 (2003)Google Scholar
  86. 86. S. Schwarz et al.: Nucl. Instr. Meth. B 204, 507 (2003)Google Scholar
  87. 87. D. Morrissey et al.: Europ. Phys. Jour. 15, 105 (2001)Google Scholar
  88. 88. D.J. Morrissey, B.M. Sherrill, In-Flight Separation of Projectile Fragments, Lect. Notes Phys. 651, 113–135 (2004)Google Scholar
  89. 89. S. Schwarz et al., Nucl. Instr. Meth. B 204, 474 (2003)Google Scholar
  90. 90. J. Äystö et al.: J. Phys. B 36, 573 (2003)Google Scholar
  91. 91. F. Herfurth: Nucl. Instr. Meth. B 204, 587 (2003)Google Scholar
  92. 92. G. Gabrielse, J. Tan: J. Appl. Phys. 63, 5143 (1986)CrossRefGoogle Scholar

Authors and Affiliations

  • Georg Bollen
    • 1
  1. 1.National Superconducting Cyclotron Laboratory and Department for Physics and Astronomy, Michigan State University, East Lansing, MI, 48824USA

Personalised recommendations