Advertisement

Measurement of Mass and Beta-Lifetime of Stored Exotic Nuclei

  • Fritz Bosch
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 651)

Abstract

In this lecture, the basic techniques and concepts of ion storage-cooler rings are first presented, such as storing, beam-focusing and beam-cooling. In particular the main facets of electron cooling will be discussed, the cooling method being most successfully exploited in all operational ion storage-cooler rings. In the second part it will be demonstrated why and how an ion cooler-ring connected with a device producing exotic nuclei -as the coupled experimental storage ring (ESR) and fragment separator (FRS) at GSI in Darmstadt- is a unique tool to provide efficiently, precisely and with unrivalled sensitivity the ground-state properties of exotic nuclei, i.e. mass and (beta) lifetime. They are the basic and necessary ingredients for redrawing the pathways of stellar nucleosynthesis in the s-, rp- and r- processes, and also for exploring the limits of nuclear stability at both the proton and the neutron drip line, which directly reflects the deep entanglement of nuclear astrophysics on the one hand and of nuclear structure on the other. The two complementary methods of mass measurements, ‘Schottky mass spectrometry’ for longer-lived and ‘isochronous mass spectrometry’ for short-lived exotic nuclei, are visualized by plenty of data. Both methods were first developed and successfully applied at the ESR. In the last part of the lecture the unique worldwide potential of the ESR is demonstrated, namely the measurement of beta decays of highly-charged exotic ions, including the first observation of bound-state beta decay. This exotic mode of beta decay, being marginal for neutral atoms, becomes important in hot stellar plasmas during nucleosynthesis. As a striking example the impact of bound-state beta decay for the nuclear ‘eon clock’ 187Re/187Os and, connected therewith, for the determination of the age of our milky way galaxy and of the universe will be outlined.

Keywords

Storage Ring Exotic Nucleus Electron Cool Momentum Spread Deep Entanglement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. B. Franzke: Nucl. Instr. Meth. B 24, 18 (1987)Google Scholar
  2. 2. H. Geissel et al.: Nucl. Instr. Meth. B 70, 247 (1992)Google Scholar
  3. 3. W. Magnus, S. Winkler: ‘Hills Equations’, Dover, New York (1979)Google Scholar
  4. 4. D. Nesvorny et al.: Asteroids III, 379 (2002)Google Scholar
  5. 5. H. Wu: ‘Complex Analysis III’, Lectures Notes in Math., Springer, Berlin (1987)Google Scholar
  6. 6. H.J. Metcalf, P. van de Straten: ‘Laser Cooling an Trapping’, Springer, New York (1999)Google Scholar
  7. 7. M.H. Anderson et al.: Science 269, 198 (1995)Google Scholar
  8. 8. D. Habs, R. Grimm: Ann. Rev. Nucl. Part. Sci. 45, 391 (1995)CrossRefGoogle Scholar
  9. 9. I. Klaft et al.: Phys. Rev. Lett. 73, 2425 (1994)CrossRefGoogle Scholar
  10. 10. S. van der Meer: Nobel lecture 1984, in: Les Prix Nobel 1984, ed. Nobel Foundation, p. 102Google Scholar
  11. 11. F. Nolden: private communicationGoogle Scholar
  12. 12. M. Steck: J. Opt. Soc. America B 20 no. 5, 1016 (2002)Google Scholar
  13. 13. G.I. Budker: At. Energy 22, 346 (1967)Google Scholar
  14. 14. G.I. Budker in: ‘Proc. of the Int. Symp. on Electron and Positron Storage Rings’, Saclay 1966, eds. H. Zyngier and E. Crémieux-Alean: PUF, Paris (1967), II-1-1, pp. 1–15Google Scholar
  15. 15. H. Poth: ‘Electron cooling. theory, experiment, application’, in: Phys. Rep. 196, 135 (1990)Google Scholar
  16. 16. H. Danared et al.: Phys. Rev. Lett. 72, 3775 (1994)CrossRefGoogle Scholar
  17. 17. M. Steck et al.: Phys. Rev. Lett. 77, 3803 (1996)CrossRefGoogle Scholar
  18. 18. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle: Rev. Mod. Phys. 29, 547 (1957)CrossRefGoogle Scholar
  19. 19. Z.Y. Bao, F. Käppeler: Atomic Data Nucl. Data Tables 26, 411 (1987)Google Scholar
  20. 20. C. Freiburghaus et al.: Astrophys. J. 516, 381 (1999)CrossRefGoogle Scholar
  21. 21. H. Schatz et al.: Phys. Rep. 294, 167 (1998)CrossRefGoogle Scholar
  22. 22. F. Käppeler, F.-K. Thielemann, M. Wiescher: Ann. Rev. Nucl. Part. Sci. 48, 175 (1999)CrossRefGoogle Scholar
  23. 23. B. Pfeiffer, K.-L. Kratz, F.K. Thielemann: Z. Phys. A 357, 235 (1997)CrossRefGoogle Scholar
  24. 24. D.J. Morrissey, B.M. Sherrill: In-Flight Separation of Projectile Fragments, Lect. Notes Phys. 651, 113–135 (2004)Google Scholar
  25. 25. H. Geissel et al.: Nucl. Phys. A 701, 259c (2002)CrossRefGoogle Scholar
  26. 26. C. Scheidenberger: private communicationGoogle Scholar
  27. 27. T.  Radon et al.: Nucl. Phys. A 677, 75 (2000)CrossRefGoogle Scholar
  28. 28. F. Attallah et al.: Nucl. Phys. A 701, 561c (2002)CrossRefGoogle Scholar
  29. 29. M. Hausmann et al.: Nucl. Instr. Meth. A 446, 569 (2000)Google Scholar
  30. 30. Yu.A. Litvinov et al.: Hyperfine Interactions 132, 283 (2001)Google Scholar
  31. 31. J. Stadlmann et al. in: Proc. STORI99, AIP Conf. Proc. 512, 305 (2000)Google Scholar
  32. 32. M. Jung et al.: Phys. Rev. Lett. 69, 2164 (1992)CrossRefGoogle Scholar
  33. 33. K. Takahashi, K. Yokoi: Atomic Data Nucl. Data Tables 26, 375 (1987)Google Scholar
  34. 34. S. Perlmutter et al.: Astrophys. J. 517, 565 (1999); J. Glanz. Science 282 (1998)CrossRefGoogle Scholar
  35. 35. F. Bosch: ‘Rhenium-187 and the age of the galaxy’ in: AIP Conf. Proc. 477, 16 (1999); and ICAP, Windsor, Canada, 1998, ed. by W.E. Baylis, G.W.F. Drake, pp. 344–360Google Scholar
  36. 36. D.A. Vandenberg et al.: Ann. Rev. Astron. and Astrophys. 34, 461 (1996)CrossRefGoogle Scholar
  37. 37. E. Anders et al.: Geochim. Cosmochim. Acta 53, 197 (1989)CrossRefGoogle Scholar
  38. 38. K. Yokoi, K. Takahashi, M. Arnould: Astron. and Astrophys. J. 117, 65 (1983)Google Scholar
  39. 39. E.M.D. Symbalisty, D.N. Schramm: Rep. Prog. Phys. 44, 293 (1981)CrossRefGoogle Scholar
  40. 40. K. Takahashi, K. Yokoi: Nucl. Phys. A 404, 578 (1983)CrossRefGoogle Scholar
  41. 41. K. Takahashi, K. Yokoi: Phys. Rev. C 36, 1522 (1987)CrossRefGoogle Scholar
  42. 42. F. Bosch et al.: Phys. Rev. Lett 77, 5170 (1996)Google Scholar
  43. 43. K. Takahashi: ‘The 187Re-187Os cosmochromometry and chemical evolution in the solar neighborhood’, in: Tours Symp. on Nucl. Phys. III, ed. by M. Arnould et al., AIP Conf. Proc. 425, 616 (1997)Google Scholar
  44. 44. H. Behrens, J. Jaenecke: ‘Numerical Tables for β-Decay and Electron Capture’, Landolt-Börnstein, New Series GG1, Vol. 4 (2001)Google Scholar
  45. 45. W.F. Henning: ‘Conceptional Design Report’, unpublished, GSI (2001) http://www.gsi.de/GSI-future/cdr/Google Scholar

Authors and Affiliations

  • Fritz Bosch
    • 1
  1. 1.Gesellschaft für Schwerionenforschung (GSI), PO Box 64220, DarmstadtGermany

Personalised recommendations