Skip to main content

In-Flight Separation of Projectile Fragments

  • Chapter
  • First Online:
The Euroschool Lectures on Physics with Exotic Beams, Vol. I

Part of the book series: Lecture Notes in Physics ((LNP,volume 651))

Abstract

The in-flight or direct production of secondary beams of radioactive ions is discussed. Two reaction mechanisms, fragmentation and fission of fast projectiles, have been shown to be very effective at producing beams of an extremely broad range of interesting nuclei. The resulting nuclei have large forward momenta with relatively sharp angular distributions peaked close to zero degrees. Such narrow distributions are readily collected and purified with magnetic devices by exploiting atomic energy-loss processes in profiled energy degraders. With large aperture magnets and high energy primary beams, collection of nearly the full momentum and angular distribution of a given fragment are now possible, although the beam emittance may be poor and depends on the production mechanism. The features of the production reaction mechanisms, separation techniques, and a survey of the present and proposed devices are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Y.P. Viyogi et al., Phys. Rev. Lett. 42, 33 (1979).

    Google Scholar 

  • 2. J. Alonso, A. Chatterjee, and C.A. Tobias, 1978, IEEE Trans. on Nucl. Sci. NS-26, 3003 (1978).

    Google Scholar 

  • 3. Proc. of the Workshop on Research with Radioactive Beams, Washington DC, Lawrence Berkeley Laboratory Report LBL-18187, unpublished, (1984).

    Google Scholar 

  • 4. J.P. Dufour et al., Nucl. Instr. and Meth. A 248, 267 (1986).

    Google Scholar 

  • 5. R. Anne et al., Nucl. Instr. and Meth. A 257, 215 (1987).

    Google Scholar 

  • 6. K.-H. Schmidt et al., Nucl. Instr. and Meth. A 260, 287 (1987).

    Google Scholar 

  • 7. H. Geissel et al., Nucl. Instr. and Meth. A 282, 247 (1989).

    Google Scholar 

  • 8. B. Blank et al. Phy. Rev. Lett., 84, 1116 (2000).

    Google Scholar 

  • 9. R. Schneider et al., Z. Phys. A 348, 241 (1994).

    Google Scholar 

  • 10. M. Lewitowicz et al. Phys. Lett. B 322, 20 (1994).

    Google Scholar 

  • 11. B.M. Sherrill et al., Nucl. Instr. and Meth. B 70, 298 (1992).

    Google Scholar 

  • 12. T. Kubo et al., In Proc. First Intl. Conf. on Radioactive Nuclear Beams, W.D. Myers, J.M. Nitschke, and E. Norman, eds. (World Scientific, Singapore, 1990) pp. 563-572.

    Google Scholar 

  • 13. H. Geissel et al., Nucl. Inst. and Meth. B 70, 286 (1992).

    Google Scholar 

  • 14. A.G. Artukh et al., In Proc. Third Intl. Conf. on Radioactive Nuclear Beams, D.J. Morrissey, ed. (Editions Frontieres, Gif-sur-Yvette, 1993) pp. 45-48.

    Google Scholar 

  • 15. A.C. Mueller, and R. Anne, Nucl. Instr. and Meth. B 56/57, 559 (1991).

    Google Scholar 

  • 16. D.J. Morrissey et al., Nucl. Instr. and Meth. B 204, 90 (2003), and references therein.

    Google Scholar 

  • 17. T. Kubo et al., Nucl. Instr. amd Meth. B 204, 97 (2003), and references therein.

    Google Scholar 

  • 18. H. Geissel et al., Nucl. Instr. and Meth. B 204, 71 (2003), and references therein.

    Google Scholar 

  • 19. B.M. Sherrill, Nucl. Instr. and Meth. B 204, 765 (2003), and RIA Task Force Report, (1999), http://srfsrv.jlab.org/isol/ISOLTaskForceReport.doc

    Google Scholar 

  • 20. J.A. Nolen, and L. Harwood, Instrumentation for Heavy Ion Nuclear Research, D. Shapira, ed. (Harwood, New York, 1985) 171.

    Google Scholar 

  • 21. K. Sümmerer and B. Blank, Phys. Rev. C 61, 034607 (2000).

    Google Scholar 

  • 22. B.M. Sherrill, In Proc. Intl. Conf. on Radioactive Nuclear Beams, Th. Delbar, ed. (Adam Hilger, London, 1992) pp. 1-20.

    Google Scholar 

  • 23. G. Münzenberg, Nucl. Instr. and Meth. B 70, 265 (1992).

    Google Scholar 

  • 24. H. Geissel, G. Münzenberg, and K. Riisager, Ann. Rev. Nucl. Part. Sci. 45, 163 (1995).

    Google Scholar 

  • 25. D.J. Morrissey and B.M. Sherrill, Phil. Trans. R. Soc. London A356, 1985 (1998).

    Google Scholar 

  • 26. C.N. Davids, and J.D. Larson, Nucl. Instr. and Meth. B 40/B41, 1224 (1989).

    Google Scholar 

  • 27. R.E. Tribble, R.H. Burch, and C.A. Gagliardi, Nucl. Instr. and Meth. A 285, 441 (1989).

    Google Scholar 

  • 28. H. Wollnik, Optics of Charged Particles, (Academic Press:Boston, 1989).

    Google Scholar 

  • 29. M. Bernas et al., Phys. Lett. B 331, 19 (1994).

    Google Scholar 

  • 30. K.E. Rehm et al., Nucl. Instr. and Meth. A 370, 438 (1996).

    Google Scholar 

  • 31. A.S. Goldhaber and H.H. Heckmann, Ann. Rev. Nucl. Part. Sci. 28, 161 (1978).

    Google Scholar 

  • 32. J. Hüfner, Phys. Rep. 125, 129 (1985).

    Google Scholar 

  • 33. D.J. Morrissey et al., Phys. Rev. Lett. 43, 1139 (1979).

    Google Scholar 

  • 34. Y. Yariv and Z. Fraenkel, Phys. Rev. C 20, 2227 (1979).

    Google Scholar 

  • 35. Y. Yariv and Z. Fraenkel, Phys. Rev. C 24, 488 (1981).

    Google Scholar 

  • 36. M. Fauerbach, Diplomarbeit, T.H. Darmstadt, 1992.

    Google Scholar 

  • 37. J.D. Bowman, W.J. Swiatecki, and C.F. Tsang, Lawrence Berkeley Laboratory Report, LBL-2908, (1973), unpublished.

    Google Scholar 

  • 38. J. Gosset et al., Phys. Rev. C 16, 629 (1977).

    Google Scholar 

  • 39. D.J. Morrissey et al., Phys. Rev. C 18, 1267 (1978).

    Google Scholar 

  • 40. J.-J. Gaimard and K.-H. Schmidt, Nucl. Phys. A 531, 709 (1991).

    Google Scholar 

  • 41. M.  deJong, A.V. Ignatyuk, K.-H. Schmidt, Nucl. Phys. A 613, 435 (1997).

    Google Scholar 

  • 42. G.A. Souliotis et al., Phys. Lett. B 543, 163 (2002).

    Google Scholar 

  • 43. T.  Enqvist et al., Nucl. Phys. A 703, 435 (2002).

    Google Scholar 

  • 44. K. Sümmerer and D.J. Morrissey, In Proc. First Intl. Conf. on Radioactive Nuclear Beams, W.D. Myers, J.M. Nitschke, and E. Norman, eds. (World Scientific, Singapore, 1990) pp. 122-131, and K. Sümmerer et al., Phys. Rev. C 42, 2546 (1990).

    Google Scholar 

  • 45. G. Rudstam, Z. Naturforsch. 21a, 1027 (1966).

    Google Scholar 

  • 46. G.A. Souliotis et al., Phys. Rev. C 46, 1383 (1992).

    Google Scholar 

  • 47. R. Pfaff et al., Phys. Rev. C 53, 1753 (1996).

    Google Scholar 

  • 48. A.S. Goldhaber, Phys. Lett. B 53, 306 (1974).

    Google Scholar 

  • 49. G. Bertsch, Phys. Rev. Lett. 46, 472 (1981).

    Google Scholar 

  • 50. D.J. Morrissey, Phys. Rev. C 39, 406 (1989).

    Google Scholar 

  • 51. K. Van Bibber et al., Phys. Rev. Lett. 43, 840 (1979).

    Google Scholar 

  • 52. R. Pfaff et al., Phys. Rev. C 51, 1348 (1995).

    Google Scholar 

  • 53. K. Asahi et al., Phys. Lett. 251B, 488 (1990).

    Google Scholar 

  • 54. H. Okuno et al., Phys. Lett. 335B, 29 (1994).

    Google Scholar 

  • 55. D. Groh et al., Phys. Rev. Lett. 90, 202502 (2003).

    Google Scholar 

  • 56. K.-H. Schmidt et al., Nucl. Phys. A 701, 115 (2002), and references therein.

    Google Scholar 

  • 57. A. Savalle et al., In Proc. EPAC96 Fifth European Particle Accelerator Conf., (IoP Publishing, 1996) pp. 2403-2405, and A. Joubert et al., GANIL Report A-91-01, (1991) unpublished.

    Google Scholar 

  • 58. J.A. Nolen et al., Nucl. Instr. and Meth. B 204, 293 (2003), ibid. pp. 298-302.

    Google Scholar 

  • 59. O.B. Tarasov and D. Bazin, Nucl. Instr. and Meth. B 204, 174 (2003), and references therein.

    Google Scholar 

  • 60. N. Iwasa, H. Geissel, G. Münzenberg, C. Scheidenberger, Th. Schwab, H. Wollnik, Nucl. Instr. and Meth. B 126, 284 (1997).

    Google Scholar 

  • 61. P. Dendooven, Nucl. Instrum. Meth. B 126, 182 (1997), and references therein.

    Google Scholar 

  • 62. H. Weick et al., Nucl. Instrum. Meth. B 164-165, 168 (2000).

    Google Scholar 

  • 63. C. Scheidenberger et al., Nucl. Instr. and Meth. B 204, 119 (2003).

    Google Scholar 

  • 64. M. Wada et al., Nucl. Instr. and Meth. B 204, 570 (2003).

    Google Scholar 

  • 65. L. Weissman et al., Nucl. Instr. and Meth. A 522, 303 (2004).

    Google Scholar 

  • 66. J.F. Ziegler, “The Stopping and Range of Ions in Matter (SRIM-2000)”, http://www.research.ibm.com/ionbeams/#SRIM

    Google Scholar 

  • 67. G. Savard et al., Nucl. Instr. and Meth. B 204, 582 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jim Al-Khalili Ernst Roeckl

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Morrissey, D.J., Sherrill, B.M. In-Flight Separation of Projectile Fragments. In: Al-Khalili, J., Roeckl, E. (eds) The Euroschool Lectures on Physics with Exotic Beams, Vol. I. Lecture Notes in Physics, vol 651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44490-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44490-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22399-3

  • Online ISBN: 978-3-540-44490-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics