Advertisement

In-Flight Separation of Projectile Fragments

  • David J. Morrissey
  • Brad M. Sherrill
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 651)

Abstract

The in-flight or direct production of secondary beams of radioactive ions is discussed. Two reaction mechanisms, fragmentation and fission of fast projectiles, have been shown to be very effective at producing beams of an extremely broad range of interesting nuclei. The resulting nuclei have large forward momenta with relatively sharp angular distributions peaked close to zero degrees. Such narrow distributions are readily collected and purified with magnetic devices by exploiting atomic energy-loss processes in profiled energy degraders. With large aperture magnets and high energy primary beams, collection of nearly the full momentum and angular distribution of a given fragment are now possible, although the beam emittance may be poor and depends on the production mechanism. The features of the production reaction mechanisms, separation techniques, and a survey of the present and proposed devices are presented.

Keywords

Exotic Nucleus Angular Spread Radioactive Beam Secondary Beam Beam Emittance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Y.P. Viyogi et al., Phys. Rev. Lett. 42, 33 (1979).Google Scholar
  2. 2. J. Alonso, A. Chatterjee, and C.A. Tobias, 1978, IEEE Trans. on Nucl. Sci. NS-26, 3003 (1978).Google Scholar
  3. 3. Proc. of the Workshop on Research with Radioactive Beams, Washington DC, Lawrence Berkeley Laboratory Report LBL-18187, unpublished, (1984).Google Scholar
  4. 4. J.P. Dufour et al., Nucl. Instr. and Meth. A 248, 267 (1986).Google Scholar
  5. 5. R. Anne et al., Nucl. Instr. and Meth. A 257, 215 (1987).Google Scholar
  6. 6. K.-H. Schmidt et al., Nucl. Instr. and Meth. A 260, 287 (1987).Google Scholar
  7. 7. H. Geissel et al., Nucl. Instr. and Meth. A 282, 247 (1989).Google Scholar
  8. 8. B. Blank et al. Phy. Rev. Lett., 84, 1116 (2000).Google Scholar
  9. 9. R. Schneider et al., Z. Phys. A 348, 241 (1994).Google Scholar
  10. 10. M. Lewitowicz et al. Phys. Lett. B 322, 20 (1994).Google Scholar
  11. 11. B.M. Sherrill et al., Nucl. Instr. and Meth. B 70, 298 (1992).Google Scholar
  12. 12. T. Kubo et al., In Proc. First Intl. Conf. on Radioactive Nuclear Beams, W.D. Myers, J.M. Nitschke, and E. Norman, eds. (World Scientific, Singapore, 1990) pp. 563-572.Google Scholar
  13. 13. H. Geissel et al., Nucl. Inst. and Meth. B 70, 286 (1992).Google Scholar
  14. 14. A.G. Artukh et al., In Proc. Third Intl. Conf. on Radioactive Nuclear Beams, D.J. Morrissey, ed. (Editions Frontieres, Gif-sur-Yvette, 1993) pp. 45-48.Google Scholar
  15. 15. A.C. Mueller, and R. Anne, Nucl. Instr. and Meth. B 56/57, 559 (1991).Google Scholar
  16. 16. D.J. Morrissey et al., Nucl. Instr. and Meth. B 204, 90 (2003), and references therein.Google Scholar
  17. 17. T. Kubo et al., Nucl. Instr. amd Meth. B 204, 97 (2003), and references therein.Google Scholar
  18. 18. H. Geissel et al., Nucl. Instr. and Meth. B 204, 71 (2003), and references therein.Google Scholar
  19. 19. B.M. Sherrill, Nucl. Instr. and Meth. B 204, 765 (2003), and RIA Task Force Report, (1999), http://srfsrv.jlab.org/isol/ISOLTaskForceReport.docGoogle Scholar
  20. 20. J.A. Nolen, and L. Harwood, Instrumentation for Heavy Ion Nuclear Research, D. Shapira, ed. (Harwood, New York, 1985) 171.Google Scholar
  21. 21. K. Sümmerer and B. Blank, Phys. Rev. C 61, 034607 (2000).Google Scholar
  22. 22. B.M. Sherrill, In Proc. Intl. Conf. on Radioactive Nuclear Beams, Th. Delbar, ed. (Adam Hilger, London, 1992) pp. 1-20.Google Scholar
  23. 23. G. Münzenberg, Nucl. Instr. and Meth. B 70, 265 (1992).Google Scholar
  24. 24. H. Geissel, G. Münzenberg, and K. Riisager, Ann. Rev. Nucl. Part. Sci. 45, 163 (1995).Google Scholar
  25. 25. D.J. Morrissey and B.M. Sherrill, Phil. Trans. R. Soc. London A356, 1985 (1998).Google Scholar
  26. 26. C.N. Davids, and J.D. Larson, Nucl. Instr. and Meth. B 40/B41, 1224 (1989).Google Scholar
  27. 27. R.E. Tribble, R.H. Burch, and C.A. Gagliardi, Nucl. Instr. and Meth. A 285, 441 (1989).Google Scholar
  28. 28. H. Wollnik, Optics of Charged Particles, (Academic Press:Boston, 1989).Google Scholar
  29. 29. M. Bernas et al., Phys. Lett. B 331, 19 (1994).Google Scholar
  30. 30. K.E. Rehm et al., Nucl. Instr. and Meth. A 370, 438 (1996).Google Scholar
  31. 31. A.S. Goldhaber and H.H. Heckmann, Ann. Rev. Nucl. Part. Sci. 28, 161 (1978).Google Scholar
  32. 32. J. Hüfner, Phys. Rep. 125, 129 (1985).Google Scholar
  33. 33. D.J. Morrissey et al., Phys. Rev. Lett. 43, 1139 (1979).Google Scholar
  34. 34. Y. Yariv and Z. Fraenkel, Phys. Rev. C 20, 2227 (1979).Google Scholar
  35. 35. Y. Yariv and Z. Fraenkel, Phys. Rev. C 24, 488 (1981).Google Scholar
  36. 36. M. Fauerbach, Diplomarbeit, T.H. Darmstadt, 1992.Google Scholar
  37. 37. J.D. Bowman, W.J. Swiatecki, and C.F. Tsang, Lawrence Berkeley Laboratory Report, LBL-2908, (1973), unpublished.Google Scholar
  38. 38. J. Gosset et al., Phys. Rev. C 16, 629 (1977).Google Scholar
  39. 39. D.J. Morrissey et al., Phys. Rev. C 18, 1267 (1978).Google Scholar
  40. 40. J.-J. Gaimard and K.-H. Schmidt, Nucl. Phys. A 531, 709 (1991).Google Scholar
  41. 41. M.  deJong, A.V. Ignatyuk, K.-H. Schmidt, Nucl. Phys. A 613, 435 (1997).Google Scholar
  42. 42. G.A. Souliotis et al., Phys. Lett. B 543, 163 (2002).Google Scholar
  43. 43. T.  Enqvist et al., Nucl. Phys. A 703, 435 (2002).Google Scholar
  44. 44. K. Sümmerer and D.J. Morrissey, In Proc. First Intl. Conf. on Radioactive Nuclear Beams, W.D. Myers, J.M. Nitschke, and E. Norman, eds. (World Scientific, Singapore, 1990) pp. 122-131, and K. Sümmerer et al., Phys. Rev. C 42, 2546 (1990).Google Scholar
  45. 45. G. Rudstam, Z. Naturforsch. 21a, 1027 (1966).Google Scholar
  46. 46. G.A. Souliotis et al., Phys. Rev. C 46, 1383 (1992).Google Scholar
  47. 47. R. Pfaff et al., Phys. Rev. C 53, 1753 (1996).Google Scholar
  48. 48. A.S. Goldhaber, Phys. Lett. B 53, 306 (1974).Google Scholar
  49. 49. G. Bertsch, Phys. Rev. Lett. 46, 472 (1981).Google Scholar
  50. 50. D.J. Morrissey, Phys. Rev. C 39, 406 (1989).Google Scholar
  51. 51. K. Van Bibber et al., Phys. Rev. Lett. 43, 840 (1979).Google Scholar
  52. 52. R. Pfaff et al., Phys. Rev. C 51, 1348 (1995).Google Scholar
  53. 53. K. Asahi et al., Phys. Lett. 251B, 488 (1990).Google Scholar
  54. 54. H. Okuno et al., Phys. Lett. 335B, 29 (1994).Google Scholar
  55. 55. D. Groh et al., Phys. Rev. Lett. 90, 202502 (2003).Google Scholar
  56. 56. K.-H. Schmidt et al., Nucl. Phys. A 701, 115 (2002), and references therein.Google Scholar
  57. 57. A. Savalle et al., In Proc. EPAC96 Fifth European Particle Accelerator Conf., (IoP Publishing, 1996) pp. 2403-2405, and A. Joubert et al., GANIL Report A-91-01, (1991) unpublished.Google Scholar
  58. 58. J.A. Nolen et al., Nucl. Instr. and Meth. B 204, 293 (2003), ibid. pp. 298-302.Google Scholar
  59. 59. O.B. Tarasov and D. Bazin, Nucl. Instr. and Meth. B 204, 174 (2003), and references therein.Google Scholar
  60. 60. N. Iwasa, H. Geissel, G. Münzenberg, C. Scheidenberger, Th. Schwab, H. Wollnik, Nucl. Instr. and Meth. B 126, 284 (1997).Google Scholar
  61. 61. P. Dendooven, Nucl. Instrum. Meth. B 126, 182 (1997), and references therein.Google Scholar
  62. 62. H. Weick et al., Nucl. Instrum. Meth. B 164-165, 168 (2000).Google Scholar
  63. 63. C. Scheidenberger et al., Nucl. Instr. and Meth. B 204, 119 (2003).Google Scholar
  64. 64. M. Wada et al., Nucl. Instr. and Meth. B 204, 570 (2003).Google Scholar
  65. 65. L. Weissman et al., Nucl. Instr. and Meth. A 522, 303 (2004).Google Scholar
  66. 66. J.F. Ziegler, “The Stopping and Range of Ions in Matter (SRIM-2000)”, http://www.research.ibm.com/ionbeams/#SRIMGoogle Scholar
  67. 67. G. Savard et al., Nucl. Instr. and Meth. B 204, 582 (2003).Google Scholar

Authors and Affiliations

  • David J. Morrissey
    • 1
  • Brad M. Sherrill
    • 1
  1. 1.National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824USA

Personalised recommendations