Medical Applications of Accelerated Ions

  • Wilma K. Weyrather
Part of the Lecture Notes in Physics book series (LNP, volume 651)


Accelerated ions have significant advantages for radiotherapy. From the physical side these are the inverse depth dose profile (the increase of the dose with penetration depth) and the finite range defined by the energy. Both factors, together with a small lateral scattering, provide an optimal dose distribution that makes ions an ideal tool for the treatment of deep-seated tumors close to radiosensitive organs. For carbon ions the positive physical dose distribution is potentiated by the increased relative biological effectiveness (RBE) towards the end of the particle range, which offers an additional advantage for slow growing radioresistent tumors. To exploit the high RBE to a maximum, a strict tumor conform dose application is necessary. Therefore, an active beam delivery system with an intensity-controlled rasterscan as well as a biologically optimized treatment planning based on the local effect model (LEM) have been developed at GSI. Positron emitters like 10C, 11C and 15O that are produced by the primary beam can be used to monitor the stopping point of the primary beam inside the patient using Positron Emitting Tomograpy (PET) techniques. This lecture reviews the physical and biological basis of the therapy with accelerated ions and introduces the technical and mathematical tools necessary for the realisation. Positive early medical results will encourage the realisation of other planned centres.


Dose Distribution Intensity Modulate Radiation Therapy Bragg Peak Linear Energy Transfer Depth Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. H.D.Kogelnik: Radiotherapy and Oncology 42, 203-211 (1997)Google Scholar
  2. 2. P.Brown: Am. J. Roentgenol. 164, 237-239 (1995)Google Scholar
  3. 3. R.E.Zirkle: Am. J. Cancer 25, 558-567 (1935)Google Scholar
  4. 4. J.H.Lawrence, P.C.Abersold, E.O.Lawrence: Proc. Natl. Acad. Sci. USA 22, 543-557 (1036)Google Scholar
  5. 5. R.S.Stone: Am. J. Roentgenol. 59, 771-785 (1948)Google Scholar
  6. 6. R.R.Wilson: Radiology 47, 487-491 (1946)Google Scholar
  7. 7. C.A.Tobias, H.O.Anger, J.H.Lawrence: Am. J. Roentgenol. 67, 1-27 (1952)Google Scholar
  8. 8. C.A.Tobias, J.E.Roberts, J.H.Lawrence et al.: Peaceful Uses At. Energy 10, 95-106 (1956)Google Scholar
  9. 9. W. Bragg, R.Kleemann: Phil. Mag. 10, 318-340 (1905)Google Scholar
  10. 10. G. Kraft, M. Krämer: Advances in Radiat. Biology 17, 1-52 (1993)zbMATHGoogle Scholar
  11. 11. H. Bethe: Ann. Phys. (Leipzig) 5, 325-400 (1930)zbMATHGoogle Scholar
  12. 12. F. Bloch: Z. Phys. 81, 363-376 (1933)Google Scholar
  13. 13. F. Bloch: Ann. Phys. (Leipzig) 5, 285-321 (1933)Google Scholar
  14. 14. H.W. Barkas: Nuclear Research Emulsions Vol. I, (Academic Press New York and London 1963)Google Scholar
  15. 15. T.Schwab: Transport von Schwerionen durch Materie innerhalb ionenoptischer Systeme. GSI Report 91-10, PhD Thesis, Giessen (1991)Google Scholar
  16. 16. N. Bohr: Phil. Mag. 30, 581 (1915)Google Scholar
  17. 17. S.P. Ahlen: Rev. Mod. Phys. 52, (1980)Google Scholar
  18. 18. G. Moliére: Z. Naturforschung 3a, (1948)Google Scholar
  19. 19. J. Hüfner: Phys. Reports 125, (1985)Google Scholar
  20. 20. ICRU, The Quality Factor in Radiation Protection, ICRU-Report 40, Int.Commission on Radiation Units and Measurements, Washington 1986Google Scholar
  21. 21. J. Heilmann, G. Taucher-Scholz et al.: Int. J. Radiat. Oncol. Biol. Phys. 34, 599-608 (1996)CrossRefGoogle Scholar
  22. 22. B. Jakob, M. Scholz and G. Taucher-Scholz: Radiat. Res. 154, 398-405 (2000)Google Scholar
  23. 23. M. Belli, R. Cherubini et al.: Int.J.Radiat.Biol. 55, 93-104 (1989)Google Scholar
  24. 24. M. Belli, F. Cera et al.: Int.J.Radiat.Biol 74, 501-509 (1998)CrossRefGoogle Scholar
  25. 25. G.W. Barendsen, H.M.D. Walter et al.: Radiat.Res. 18, 106-119 (1963)Google Scholar
  26. 26. G. Kraft: Nucl. Sci. Appl., 3, 1-28 (1987)Google Scholar
  27. 27. L.G. Gerweck and S.V. Kozin: Radiother.Oncol. 50 135-142, (1999)Google Scholar
  28. 28. W.K. Weyrather, S. Ritter et al.: Int.J.Radiat.Biol., 75, 1357-1364 (1999)Google Scholar
  29. 29. M. Suzuki, Y. Kase et al.: Int J Radiat Oncol Biol Phys 48, 241-250 (2000)CrossRefGoogle Scholar
  30. 30. W.K. Weyrather: ‘Radiobiological Research for Hadron Therapy’ In: Progress in Radio-Oncology VII Eds. HD Kogelnik, P Lukas, F Sedlmayer (Monduzzi Editore) Bologna, 353-360 (2002)Google Scholar
  31. 31. E.J.Hall: Radiobiology for the Radiologist, 4th edn. (J.B.Lippincott Company, Philadelphia 1994)Google Scholar
  32. 32. E.A. Blakely: ‘Biology of BEVALAC beams’ In: Pion and heavy ion Radiotherapy: Pre-Clinical and Clinical Studies Skarsgard LD Ed. New York. (Elsevier Science Publishing Co, Inc.) 229-250 (1982)Google Scholar
  33. 33. Z. Han, H. Suzuki et al.: Adv. Space Res. 22, 1725-1732 (1998)CrossRefGoogle Scholar
  34. 34. J. Kiefer, P. Schmidt and S. Koch: Radiat.Res. 156, 607-611 (2001)Google Scholar
  35. 35. Y. Furusawa, K. Fukutsu et al.: Radiat.Res. 154, 485-496 (2000)Google Scholar
  36. 36. O. Jäkel and M. Krämer: Physica Medica Vol XIV/1, 53-62 (1998)Google Scholar
  37. 37. M. Scholz, A.M. Kellerer et al.: Radiat.Environ.Biophys. 36, 59-66 (1997)CrossRefGoogle Scholar
  38. 38. M. Scholz: Bull Cancer, 83, 50s - 54s (1996)Google Scholar
  39. 39. T. Zacharias, W. Dörr et al.: Acta Oncologica 36, (1997)Google Scholar
  40. 40. M. Scholz and G. Kraft: Radiat. Prot. Dosimetry 52 29-33, (1994)Google Scholar
  41. 41. G. Kraft: Progress in Particle and Nuclear Physics 45, S473 - S 544, (2000)Google Scholar
  42. 42. Th. Haberer, W. Becher et al.: Nucl. Instr. and Meth. in Phys. Res. A330, 296-305 (1993)Google Scholar
  43. 43. M. Krämer, O. Jäkel et al.: PMB 45/11, 3299-3317 (2000)Google Scholar
  44. 44. M. Krämer and M. Scholz: PMB 45/11, 3319-3330 (2000)Google Scholar
  45. 45. O. Jäkel, M. Krämer et al.: PMBGoogle Scholar
  46. 46. M. Krämer: J. Radiat. Res. 42, 39-46 (2001) 46/4, 1101-1116 (2001)CrossRefGoogle Scholar
  47. 47. W. Enghardt et al.: Proc. Int. Conf. on Biological Applications of Relativistic Nuclei, Clermont-Ferrand, France, Oct. 1992, 30Google Scholar
  48. 48. W. Enghardt, J. Debus et al.: Strahlenther. Onkol., 175, Suppl. II, 33-36 (1999)Google Scholar
  49. 49. J. Debus, T. Haberer et al.: Strahlenther. Onkol. 176, 211 - 216 (2000)CrossRefGoogle Scholar
  50. 50. D. Schulz-Ertner, T. Haberer et al.: Int J Radiat Oncol Biol Phys 53, 36-42 (2002)CrossRefGoogle Scholar

Authors and Affiliations

  • Wilma K. Weyrather
    • 1
  1. 1.Gesellschaft für Schwerionenforschung, Planckstr. 1, 64291 DarmstadtGermany

Personalised recommendations