The Small World Phenomenonin Hybrid Power Law Graphs

  • Fan Chung
  • Linyuan Lu
Part I Network Structure
Part of the Lecture Notes in Physics book series (LNP, volume 650)


The small world phenomenon, that consistently occurs in numerous existing networks, refers to two similar but different properties — small average distance and the clustering effect. We consider a hybrid graph model that incorporates both properties by combining a global graph and a local graph. The global graph is modeled by a random graph with a power law degree distribution, while the local graph has specified local connectivity. We will prove that the hybrid graph has average distance and diameter close to that of random graphs with the same degree distribution (under certain mild conditions). We also give a simple decomposition algorithm which, for any given (real) graph, identifies the global edges and extracts the local graph (which is uniquely determined depending only on the local connectivity). We can then apply our theoretical results for analyzing real graphs, provided the parameters of the hybrid model can be appropriately chosen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. S. Milgram, The small world problem, Psychology Today, 2 (1967), 60-67.Google Scholar
  2. 2. L. A. Adamic and B. A. Huberman, Growth dynamics of the World Wide Web, Nature, 401, September 9, 1999, pp. 131.Google Scholar
  3. 3. W. Aiello, F. Chung and L. Lu, A random graph model for massive graphs, Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, (2000) 171-180.Google Scholar
  4. 4. R. B. R. Azevedo and A. M. Leroi, A power law for cells, Proc. Natl. Acad. Sci. USA, vol. 98, no. 10, (2001), 5699-5704.Google Scholar
  5. 5. A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509-512.Google Scholar
  6. 6. A.-L. Barabási, R. Albert, and H. Jeong, Scale-free characteristics of random networks: the topology of the world wide web, Physica A 272 (1999), 173-187.Google Scholar
  7. 7. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tompkins, and J. Wiener, “Graph Structure in the Web,” proceedings of the WWW9 Conference, May, 2000, Amsterdam. Paper version appeared in Computer Networks 33, (1-6), (2000), 309-321.Google Scholar
  8. 8. K. Calvert, M. Doar, and E. Zegura, Modeling Internet topology. IEEE Communications Magazine, 35(6) (1997) 160-163.Google Scholar
  9. 9. C. Cooper and A. Frieze, A general model of web graphs, Random Structures and Algorithms Vol. 22, (2003), 311-335.Google Scholar
  10. 10. M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the Internet topology, Proceedings of the ACM SIGCOM Conference, Cambridge, MA, 1999.Google Scholar
  11. 11. S. Jain and S. Krishna, A model for the emergence of cooperation, interdependence, and structure in evolving networks, Proc. Natl. Acad. Sci. USA, vol. 98, no. 2, (2001), 543-547.Google Scholar
  12. 12. J. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins, The web as a graph: Measurements, models and methods, Proceedings of the International Conference on Combinatorics and Computing, 1999.Google Scholar
  13. 13. S. R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins, Extracting large-scale knowledge bases from the web, Proceedings of the 25th VLDB Conference, Edinburgh, Scotland, 1999.Google Scholar
  14. 14. M. E. J., Newman, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA, vol. 98, no. 2, (2001), 404-409.Google Scholar
  15. 15. E. Zegura, K. Calvert, and M. Donahoo, A quantitative comparison of graph-based models for Internet topology. IEEE/ACM Transactions on Networking, 5 (6), (1997), 770-783.Google Scholar
  16. 16. F. Chung and L. Lu, Average distances in random graphs with given expected degree sequences, Proceedings of National Academy of Science, 99 (2002), 15879-15882.Google Scholar
  17. 17. D. J. Watts, Small Worlds — The Dynamics of Networks between Order and Randomness, Princeton University Press, New Jersey, 1999.Google Scholar
  18. 18. D. J. Watts and S. H. Strogats, Collective dynamics of ‘small world’ networks, Nature 393, 440-442.Google Scholar
  19. 19. J. Kleinberg, The small-world phenomenon: An algorithmic perspective, Proc. 32nd ACM Symposium on Theory of Computing, 2000.Google Scholar
  20. 20. A. Fabrikant, E. Koutsoupias and C. H. Papadimitriou, Heuristically optimized trade-offs: a new paradigm for power laws in the Internet, STOC 2002.Google Scholar
  21. 21. M. Henzinger, private communication.Google Scholar
  22. 22. P. Erdős and T. Gallai, Gráfok előírt fokú pontokkal (Graphs with points of prescribed degrees, in Hungarian), Mat. Lapok 11 (1961), 264-274.Google Scholar
  23. 23. P. Erddős and A. Rényi, On random graphs. I, Publ. Math. Debrecen 6 (1959), 290-291.Google Scholar
  24. 24. M. Molloy and B. Reed, A critical point for random graphs with a given degree sequence. Random Structures and Algorithms, Vol. 6, no. 2 and 3 (1995), 161-179.Google Scholar
  25. 25. M. Molloy and B. Reed, The size of the giant component of a random graph with a given degree sequence, Combin. Probab. Comput. 7, no. 3 (1998), 295-305.Google Scholar
  26. 26. B. Bollobás, O. Riordan, J. Spencer and G. Tusnády, The Degree Sequence of a Scale-Free Random Graph Process, Random Structures and Algorithms, Vol. 18, no. 3 (2001), 279-290.Google Scholar
  27. 27. F. Chung and L. Lu, Connected components in a random graph with given degree sequences, Annals of Combinatorics, 6 (2002), 125-145.Google Scholar
  28. 28. F. Chung and L. Lu, The diameter of random sparse graphs, Advances in Applied Math., 26 (2001), 257-279.Google Scholar
  29. 29. W. Aiello, F. Chung and L. Lu, Random evolution in massive graphs, Extended abstract appeared in The 42th Annual Symposium on Foundation of Computer Sciences, October, 2001. Paper version appeared in Handbook on Massive Data Sets, (Eds. J. Abello, et. al.), Kluwer Academic Publishers (2002), 97-122.Google Scholar

Authors and Affiliations

  • Fan Chung
    • 1
  • Linyuan Lu
    • 1
  1. 1.Department of Mathematics, University of California, San Diego, La Jolla, CA 92093USA

Personalised recommendations