Skip to main content

Emergence of Complexity in Financial Networks

  • Part III Information Networks & Social Networks
  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 650))

Abstract

We present here a brief summary of the various possible applications of network theory in the field of finance. Since we want to characterize different systems by means of simple and universal features, graph theory could represent a rather powerful methodology. In the following we report our activity in three different subfields, namely the board and director networks, the networks formed by prices correlations and the stock ownership networks. In most of the cases these three kind of networks display scale-free properties making them interesting in their own. Nevertheless, we want to stress here that the main utility of this methodology is to provide new measures of the real data sets in order to validate the different models.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Albert, R. and Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47-97 (2002).

    Google Scholar 

  • 2. D. J. Watts and Strogatz, Nature 393, 440 (1998).

    Google Scholar 

  • 3. P. Erdős, A. Rényi, Bull. Inst. Int. Stat. 38, 343 (1961).

    Google Scholar 

  • 4. B.A. Huberman and L.A. Adamic Nature 399, 130 (1999).

    Google Scholar 

  • 5. R. Albert, H. Jeong, and A. L. Barabási Nature 401, 130 (1999).

    Google Scholar 

  • 6. G. Caldarelli, R. Marchetti and L.Pietronero, Europhysics Letters 52, 386 (2000).

    Google Scholar 

  • 7. R. Pastor-Satorras, A. Vazquez and A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001).

    Google Scholar 

  • 8. M. E. J. Newman, D. J. Watts, and S. H. Strogatz, Proc. Natl. Acad. Sci. USA 99, 2566 (2002).

    Google Scholar 

  • 9. A. L. Barabási and R. Albert, Science 286, 509 (1999)

    Google Scholar 

  • 10. G. Caldarelli, A. Capocci, P. De Los Rios and M.A. Muñoz, Phys. Rev. Lett. 89, 278701 (2002)

    Google Scholar 

  • 11. M.E.J. Newman, M. Girvan to appear in Proceedings of the XVIII Sitges Conference on Statistical Mechanic 99, 12583 (2003).

    Google Scholar 

  • 12. M.Boguna, R. Pastor-Satorras, A. Vespignani ArXiv:cond-mat/0301149).

    Google Scholar 

  • 13. M.E.J. Newman Phys. Rev. E 67, 026126 (2003).

    Google Scholar 

  • 14. G. Bianconi and A.-L. Barabási Europhysics Letters 54, 436 (2001).

    Google Scholar 

  • 15. G. Caldarelli, A. Capocci, P. De Los Rios and M.A. Muñoz, Physical Review Letters 89, 258702 (2002).

    Google Scholar 

  • 16. D.S. Callaway, J.E. Hopcroft, J.M. Kleinberg, M.E.J. Newman and S.H. Strogatz Phys.Rev.E 64, 041902 (2001).

    Google Scholar 

  • 17. Davis, G.F., Yoo, M., Baker, W.E., The small world of the American corporate elite, 1982-2001, Strategic Organization 1: 301-326 (2003).

    Google Scholar 

  • 18. M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E 64, 026118 (2001).

    Google Scholar 

  • 19. M. E. J. Newman, Assortative mixing in networks, Phys. Rev. Lett. 89, 208701 (2002).

    Google Scholar 

  • 20. M. E. J. Newman and Juyong Park, Why social networks are different from other types of networks, Phys. Rev. E, in press.

    Google Scholar 

  • 21. M. Catanzaro, G. Caldarelli, L. Pietronero, Assortative model for social networks, cond-mat 0308073 v1

    Google Scholar 

  • 22. Battiston, S., Bonabeau, E., Weisbuch G., Decision making dynamics in corporate boards, Physica A, 322, 567 (2003).

    Google Scholar 

  • 23. Battiston, S., Weisbuch G., Bonabeau, E., Decision spread in the corporate board network, submitted.

    Google Scholar 

  • 24. Y. J. Campbell, A. W. Lo, A. C. Mackinlay The Econometrics of Financial Markets, (Princeton University Press, Princeton,1997) and references therein.

    Google Scholar 

  • 25. N Vandewalle, F Brisbois and X Tordoir Quantitative Finance 1, 372 (2001).

    Google Scholar 

  • 26. K. V. Mardia, J. T. Kent and J. M. Bibby Multivariate Analisys, (CA: Academic, San Diego, 1979).

    Google Scholar 

  • 27. J. C. Gower, Biometrika 53, 325 (1966).

    Google Scholar 

  • 28. R. N. Mantegna, Eur. Phys. J. B 11, 193 (1999).

    Google Scholar 

  • 29. V. Batagelj, A. Mrvar: Pajek – Program for Large Network Analysis. Connections, 21(1998)2, 47-57. Home page for downloads: http://vlado.fmf.uni-lj.si/pub/networks/pajek/

    Google Scholar 

  • 30. G. Bonanno, F. Lillo and R. N. Mantegna, Quantitative Finance 1, 96 (2001).

    Google Scholar 

  • 31. R. N. Mantegna and H. E. Stanley An introduction to econophysics: correlations and complexity in finance (Cambridge University press, Cambridge, 2000).

    Google Scholar 

  • 32. The Standard Industrial Classification system can be found at http://www.osha.gov/oshstats/naics-manual.html

    Google Scholar 

  • 33. L. Laloux, P. Cizeau, J. P. Bouchaud and M. Potters, Phys. Rev. Letters 83, 1467 (1999).

    Google Scholar 

  • 34. V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. Nunes Amaral and H. E. Stanley, Phys. Rev. Lett. 83, 1471 (1999).

    Google Scholar 

  • 35. I. Rodriguez-Iturbe and A. Rinaldo, Fractal River Basins, (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  • 36. J.-P. Onnela, A. Chackraborti, K. Kaski, J. Kertész ArXiv:cond-mat/0303579 and ArXiv:cond-mat/0302546

    Google Scholar 

  • 37. M. D. Penrose, The Annals of Probability 24, 1903 (1996).

    Google Scholar 

  • 38. T.E. Harris, The Theory of Branching Processes (Dover, New York, 1989).

    Google Scholar 

  • 39. V. Pareto Cours d’Économie Politique (Macmillan, London, 1897). Reprinted in Oeuvres Complétes (Droz, Geneva, 1965).

    Google Scholar 

  • 40. W.W. Badger, Mathematical models as a tool for the social science (Gordon and Breach, New York, 1980).

    Google Scholar 

  • 41. C. Dagum, & M. Zenga, (eds.) Income and Wealth Distribution, Inequality and Poverty (Springer-Verlag, Berlin, 1990).

    Google Scholar 

  • 42. J. J. Persky, Pareto’s law. Journal of Economic Perspectives 6, 181-192 (1992).

    Google Scholar 

  • 43. Yook, S. H., Jeong, H., Barabási, A.-L. and Tu, Y. Weighted evolving networks. Phys. Rev. Lett. 86, 5835-5838 (2001).

    Google Scholar 

  • 44. H. Markovitz, Portfolio Selection: Efficient Diversification of Investments (Wiley, New York, 1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eli Ben-Naim Hans Frauenfelder Zoltan Toroczkai

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Caldarelli, G., Battiston, S., Garlaschelli, D., Catanzaro, M. Emergence of Complexity in Financial Networks. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds) Complex Networks. Lecture Notes in Physics, vol 650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44485-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44485-5_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22354-2

  • Online ISBN: 978-3-540-44485-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics