Information Dynamics in the Networked World

  • Bernardo A. Huberman
  • Lada A. Adamic
Part III Information Networks & Social Networks
Part of the Lecture Notes in Physics book series (LNP, volume 650)


We review three studies of information flow in social networks that help reveal their underlying social structure, how information spreads among them and why small world experiments work.


Degree Distribution Betweenness Centrality Epidemic Model Information Dynamics Small World 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. B. Wellman, “Computer networks as social networks,” Science, vol. 293, pp. 2031–34, 2002.Google Scholar
  2. 2. S. Whittaker and C. Sidner, “Email overload: exploring personal information management of email,” in Proceedings of CHI’96 Conference on Computer Human Interaction, (New York), pp. 276–283, Logos Verlag, 21996.Google Scholar
  3. 3. R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt, and A. Arenas, “Self-similar community structure in organizations,” Physical Review E, vol. 65, p. 065103, 2003.Google Scholar
  4. 4. J. R. Tyler, D. M. Wilkinson, and B. A. Huberman, “Email as spectroscopy: Automated discovery of community structure within organizations,” in Proceedings of the International Conference on Communities and Technologies, (Netherlands), Kluwer Academic Publishers, 2003.Google Scholar
  5. 5. J.-P. Eckmann, E. Moses, and D. Sergi, “Dialog in e-mail traffic.”, 2003.Google Scholar
  6. 6. M. F. Schwartz and D. C. M. Wood, “Discovering shared interests among people using graph analysis,” Communications of the ACM, vol. 36, no. 8, pp. 78–89, 1993.Google Scholar
  7. 7. F. Wu, B. A. Huberman, L. A. Adamic, and J. Tyler, “Information flow in social groups,” Physica A, 2004. (to appear).Google Scholar
  8. 8. L. A. Adamic and E. Adar, “How to search a social network.” submitted for publication,, 2002.Google Scholar
  9. 9. W. G. Ouchi, “Markets, bureaucracies, and clans,” Administrative Science Quarterly, vol. 25, pp. 129–141, 1980.Google Scholar
  10. 10. P. Blau and W. Scott, Formal organizations. A comparative approach. Lndn. Routledge & Kegan Paul, 1963.Google Scholar
  11. 11. R. S. Burt, “Models of network structure,” Annual Review of Sociology, vol. 6, pp. 79–141, 1980.Google Scholar
  12. 12. S. Wasserman and K. Faust, Social network analysis. Cambridge: Cambridge University Press, 1994.Google Scholar
  13. 13. W. R. Scott, Organizations: Rational, Natural, and Open Systems. Englewood Cliffs, NJ: Prentice-Hall, 1992.Google Scholar
  14. 14. B. Huberman and T. Hogg, “Communities of practice: Performance and evolution,” Computational and Mathematical Organization Theory, vol. 1, pp. 73–92, 1995.Google Scholar
  15. 15. M. Crozier, The Bureaucratic Phenomenon. Chicago: University of Chicago Press, 1964.Google Scholar
  16. 16. D. Crane, Invisible Colleges: Diffusion of Knowledge in Scientific Communities. Chicago: University of Chicago Press, 1972.Google Scholar
  17. 17. J. Lave and E. Wenger, Situated Learning: Legitimate Peripheral Participation. Cambridge University Press, 1991.Google Scholar
  18. 18. N. Ducheneaut and V. Bellotti, “A study of email work processes in three organizations.” to appear in the Journal of CSCW.Google Scholar
  19. 19. L. A. Adamic and E. Adar, “Friends and neighbors on the web,” Social Networks, vol. 25, no. 3, pp. 211–230, 2003.Google Scholar
  20. 20. T. Allen, Managing the Flow of Technology. Cambrige, MA: MIT Press, 1984.Google Scholar
  21. 21. P. Hinds and S. Kiesler, “Communication across boundaries: Work, structure, and use of communication technologies in a large organization,” Organization Science, vol. 6, no. 4, pp. 373–393, 1995.Google Scholar
  22. 22. L. Garton, C. Haythornwaite, and B. Wellman, “Studying on-line social networks,” Journal of Computer Mediated Communication, vol. 3, no. 1, 1997.Google Scholar
  23. 23. H. Alani, K. O’Hara, and N. Shadbolt, “Ontocopi: Methods and tools for identifying communities of practice, intelligent information processing conference,” in IFIP World Computer Congress (WCC), 2002.Google Scholar
  24. 24. M. Girvan and M. Newman, “Community structure in social and biological networks,” Proc. Natl. Acad. Sci. USA, vol. 99, pp. 8271–8276, 2002.Google Scholar
  25. 25. D. Wilkinson and B. A. Huberman, “A method for finding communities of related genes.” Proc. Natl. Acad. Sci. USA, Feb. 2, 2004, 10.1073/pnas.0307740100.Google Scholar
  26. 26. L. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, vol. 40, pp. 35–41, 1977.Google Scholar
  27. 27. U. Brandes, “A faster algorithm for betweenness centrality,” Journal of Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.Google Scholar
  28. 28. M. Newman, “Who is the best connected scientist? a study of scientific coauthorship networks,” Phys. Rev. E, vol. 64, p. 016131, 2001.Google Scholar
  29. 29. T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by force-directed placement,” Software - Practice and Experience, vol. 21, no. 11, pp. 1129–1164, 1991.Google Scholar
  30. 30. M. K. Sparrow, “The application of network analysis to criminal intelligence: An assessment of the prospects,” Social Networks, vol. 13, pp. 251–274, 1991.Google Scholar
  31. 31. V. E. Krebs, “Uncloaking terrorist networks,” First Monday, vol. 7, April 2002.Google Scholar
  32. 32. M. E. J. Newman, “Scientific collaboration networks. ii. shortest paths, weighted networks, and centrality,” Phys. Rev. E, vol. 64, p. 016132, 2001.Google Scholar
  33. 33. M. E. J. Newman, “Fast algorithm for detecting community structure in networks.”, 2003.Google Scholar
  34. 34. F. Wu and B. A. Huberman, “Discovering communities in linear time: a physics approach,” Europhysics Letters, 2004. to appear.Google Scholar
  35. 35. Z. Dezso and A.-L. Barabasi, “Halting viruses in scale-free networks,” Phys. Rev. E, vol. 65, p. 055103, 2002.Google Scholar
  36. 36. R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks,” Phys. Rev. Lett., vol. 86, no. 14, pp. 3200–3203, 2001.Google Scholar
  37. 37. M. E. J. Newman, S. F., and J. Balthrop, “Email networks and the spread of computer viruses,” Phys. Rev. E, vol. 66, p. 035101, 2002.Google Scholar
  38. 38. V. M. Eguiluz and K. Klemm, “Epidemic threshold in structured scale-free networks,” Phys. Rev. Lett., vol. 89, p. 108701, 2002.Google Scholar
  39. 39. A. Vazquez, M. Boguna, Y. Moreno, R. Pastor-Satorras, and A. Vespignani, “Topology and correlations in structured scale-free networks,” Physical Review E, vol. 67, p. 046111, 2003.Google Scholar
  40. 40. M. E. J. Newman, “Assortative mixing in networks,” Phys. Rev. Lett, vol. 89, p. 208701, 2002.Google Scholar
  41. 41. P. Lazarsfeld and R.K.Merton, “Friendship as a social process: A substantive and methodological analysis,” in Freedom and Control in Modern Society (M. Berger, T. Abel, and C. Page, eds.), New York: Van Nostrand, 1954.Google Scholar
  42. 42. J. Touhey, “Situated identities, attitude similarity, and interpersonal attraction,” Sociometry, vol. 37, pp. 363–374, 1974.Google Scholar
  43. 43. S. Feld, “The focused organization of social ties,” American Journal of Sociology, vol. 86, pp. 1015–1035, 1981.Google Scholar
  44. 44. M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with arbitrary degree distribution and their applications,” Phys. Rev. E, vol. 64, p. 026118, 2001.Google Scholar
  45. 45. M. Newman, “The spread of epidemic disease on networks,” Phys. Rev. E, vol. 66, p. 016128, 2002.Google Scholar
  46. 46. H. Ebel, L.-I. Mielsch, and S. Bornholdt, “Scale-free topology of e-mail networks,” Phys. Rev. E, vol. 66, p. 035103, 2002.Google Scholar
  47. 47. S. Milgram, “The small-world problem,” Psychology Today, vol. 1, pp. 62–67, 1967.Google Scholar
  48. 48. J. Traver and S. Milgram, “An experimental study of the small world problem,” Sociometry, vol. 32, pp. 425–443, 1969.Google Scholar
  49. 49. C. C. Lundberg, “Patterns of acquaintanceship in society and complex organization: A comparative study of the small world problem,” Pacific Sociological Review, vol. 18, pp. 206–222, 1975.Google Scholar
  50. 50. P. Killworth and H. Bernard, “Reverse small world experiment,” Social Networks, vol. 1, pp. 159–192, 1978.Google Scholar
  51. 51. P. S. Dodds, R. M., and D. J. Watts, “An experimental study of search in global social networks,” Science, vol. 301, pp. 827–829, 2003.Google Scholar
  52. 52. D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world networks,” Nature, vol. 393, pp. 440–442, 1998.Google Scholar
  53. 53. I. Pool and M. Kochen, “Contacts and influence,” Social Networks, vol. 1, pp. 5–51, 1978.Google Scholar
  54. 54. D. J. Watts, P. S. Dodds, and M. E. J. Newman, “Identity and search in social networks,” Science, vol. 296, pp. 1302–1305, 2002.Google Scholar
  55. 55. J. Kleinberg, “Navigation in a small world,” Nature, vol. 406, 2000.Google Scholar
  56. 56. J. Kleinberg, “Small-world phenomena and the dynamics of information,” Advances in Neural Information Processing Systems (NIPS), vol. 14, 2001.Google Scholar
  57. 57. L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman, “Search in power-law networks,” Phys. Rev. E, vol. 64, p. 046135, 2001.Google Scholar

Authors and Affiliations

  • Bernardo A. Huberman
    • 1
  • Lada A. Adamic
    • 1
  1. 1.HP Labs, 1501 Page Mill Road, Palo Alto CA 94304USA

Personalised recommendations