Attacks and Cascades in Complex Networks

  • Ying-Cheng Lai
  • Adilson E. Motter
  • Takashi Nishikawa
Part II Network Dynamics
Part of the Lecture Notes in Physics book series (LNP, volume 650)


This paper reviews two problems in the security of complex networks: cascades of overload failures on nodes and range-based attacks on links. Cascading failures have been reported for numerous networks and refer to the subsequent failure of other parts of the network induced by the failure of or attacks on only a few nodes. We investigate a mechanism leading to cascades of overload failures in complex networks by constructing a simple model incorporating the flow of physical quantities in the network. The second problem is motivated by the fact that most existing works on security of complex networks consider attacks on nodes rather than on links. We address attacks on links. Our investigation leads to the finding that many scale-free networks are more sensitive to attacks on short-range than on long-range links. Besides its importance concerning network security, our result has the unexpected implication that the small-world phenomenon in these scale-free networks is mainly due to short-range links.


Complex Network Random Network Conceptual Network Large Connected Component Intentional Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. S. H. Strogatz, Nature (London) 410, 268 (2001).Google Scholar
  2. 2. L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 97, 11149 (2000).Google Scholar
  3. 3. R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).Google Scholar
  4. 4. S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. 51, 1079 (2002).Google Scholar
  5. 5. M. E. J. Newman, SIAM Rev. 45, 167 (2003).Google Scholar
  6. 6. D. J. Watts and S. H. Strogatz, Nature (London) 393, 440 (1998).Google Scholar
  7. 7. A.-L. Barabási and R. Albert, Science 286, 509 (1999).Google Scholar
  8. 8. B. Bollobás, Random Graphs (Academic Press, London, 1985).Google Scholar
  9. 9. D. J. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness (Princeton University Press, Princeton, 1999).Google Scholar
  10. 10. K. Klemn and V. M. Eguíluz, Phys. Rev. E 65, 057102 (2002).Google Scholar
  11. 11. M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 99, 8271 (2002).Google Scholar
  12. 12. P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, Phys. Rev. E 65, 056109 (2002).Google Scholar
  13. 13. A. E. Motter, A. P. S. de Moura, Y.-C. Lai, and P. Dasgupta, Phys. Rev. E 65, 065102 (2002).Google Scholar
  14. 14. A. E. Motter and Y.-C. Lai, Phys. Rev. E 66, 065102 (2002).Google Scholar
  15. 15. A. E. Motter, T. Nishikawa, and Y.-C. Lai, Phys. Rev. E 66, 065103 (2002).Google Scholar
  16. 16. Scholar
  17. 17. A. P. S. de Moura, A. E. Motter, and C. Grebogi, Phys. Rev. E 68, 036106 (2003).Google Scholar
  18. 18. M. Steyvers and J. B. Tenenbaum, cond-mat/0110012 (2001).Google Scholar
  19. 19. R. F. I. Cancho and R. V. Solé, Proc. Royal Soc. London B 268, 2261 (2001).Google Scholar
  20. 20. S. N. Dorogovtsev and J. F. F. Mendes, Proc. Royal Soc. London B 268, 2603 (2001).Google Scholar
  21. 21. O. Kinouchi, A. S. Martinez, G. F. Lima, G. M. Lourenço, and S. Risau-Gusman, Physica A 315, 665 (2002).Google Scholar
  22. 22. M. Sigman and G. A. Cecchi, Proc. Natl. Acad. Sci. U.S.A. 99, 1742 (2002).Google Scholar
  23. 23. L. F. Costa, cond-mat/0309266 (2003).Google Scholar
  24. 24. P. Allegrini, P. Grigolini, and L. Palatella, cond-mat/0310648 (2003).Google Scholar
  25. 25. R. Albert, H. Jeong, and A.-L. Barabási, Nature (London) 406, 378 (2000).Google Scholar
  26. 26. R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev. Lett. 85, 4626 (2000).Google Scholar
  27. 27. D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. Lett. 85, 5468 (2000).Google Scholar
  28. 28. R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev. Lett. 86, 3682 (2001).Google Scholar
  29. 29. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener, Comput. Netw. 33, 309 (2000).Google Scholar
  30. 30. A. P. S. de Moura, Y.-C. Lai, and A. E. Motter, Phys. Rev. E 68, 017102 (2003).Google Scholar
  31. 31. D. J. Watts, Proc. Natl. Acad. Sci. USA 99, 5766 (2002).Google Scholar
  32. 32. Y. Moreno, J. B. Gómez, and A. F. Pacheco, Europhys. Lett. 58, 630 (2002).Google Scholar
  33. 33. K.-I. Goh, D.-S. Lee, B. Kahng, and D. Kim, Phys. Rev. Lett. 91, 148701 (2003).Google Scholar
  34. 34. Y. Moreno, R. Pastor-Satorras, A. Vázquez, and A. Vespignani, Europhys. Lett. 62, 292 (2003).Google Scholar
  35. 35. B. A. Carreras, D. E. Newman, I. Dolrou, and A. B. Poole, in: Proceedings of Hawaii International Conference on System Sciences, January 4-7, 2000, Maui, Hawaii.Google Scholar
  36. 36. M. L. Sachtjen, B. A. Carreras, and V. E. Lynch, Phys. Rev. E 61, 4877 (2000).Google Scholar
  37. 37. M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).Google Scholar
  38. 38. K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 87, 278701 (2001).Google Scholar
  39. 39. P. Holme and B. J. Kim, Phys. Rev. E 65, 066109 (2002).Google Scholar
  40. 40. M. Barthélemy, Phys. Rev. Lett. 91, 189803 (2003).Google Scholar
  41. 41. M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. E 64, 026118 (2001).Google Scholar
  42. 42. P. Erdös and A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. 5 , 17 (1960).Google Scholar
  43. 43. V. Latora and M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001).Google Scholar
  44. 44. S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E 62, 1842 (2000).Google Scholar
  45. 45. F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Aberg, Nature (London) 411, 907 (2001).Google Scholar

Authors and Affiliations

  • Ying-Cheng Lai
    • 1
  • Adilson E. Motter
    • 2
  • Takashi Nishikawa
    • 3
  1. 1.Department of Mathematics and Statistics, Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287USA
  2. 2.Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 DresdenGermany
  3. 3.Department of Mathematics, Southern Methodist University, Dallas, TX 75275USA

Personalised recommendations