Advertisement

Critical Phenomena in a Small World

  • Matthew B. Hastings
  • Balázs Kozma
Part II Network Dynamics
Part of the Lecture Notes in Physics book series (LNP, volume 650)

Abstract

We consider the behavior of various systems on a small-world network near a critical point. Our starting point is a different, nonrandom system with combined short- and long-range interactions. We analyze this model and find that the critical behavior is mean-field in general, with mean-field amplitudes that depend in an anomalous way on the strength of the long-range interaction. We then compare this model to the original small-world model, and derive a general criterion which determines when the two models have the same scaling behavior. The criterion can be applied to a variety of equilibrium statistical mechanics models as well as to various non-equilibrium processes. Finally, we apply these results to the specific case of the Edwards-Wilkinson equation. There, we find that the mean-field behavior is valid for d>2 dimensions, but that for d≤ 2 dimensions there is anomalous scaling.

Keywords

Processing Element Zero Mode Critical Phenomenon Small World Correlation Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. R. Albert and A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002).Google Scholar
  2. 2. D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).Google Scholar
  3. 3. A. Barrat and M. Weigt, Eur. Phys. J. B. 13, 547 (2000).Google Scholar
  4. 4. M. Gitterman, J. Phys. A 33, 8373 (2000).Google Scholar
  5. 5. B. J. Kim et. al., Phys. Rev. E 64, 56135 (2001).Google Scholar
  6. 6. C. P. Herrero, Phys. Rev. E 65, 66110 (2002).Google Scholar
  7. 7. A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes, Phys. Rev. E 67, 026123 (2003)Google Scholar
  8. 8. M. Leone, A. Vazquez, A. Vespignani, and R. Zecchina, Eur. Phys. J. B 28, 191 (2002).Google Scholar
  9. 9. M.B. Hastings, Phys. Rev. Lett 91, 098701 (2003), preprint cond-mat/0304530 (2003).Google Scholar
  10. 10. A. B. Harris, J. Phys. C 7, 1671 (1974).Google Scholar
  11. 11. B. Kozma, M. B. Hastings, and G. Korniss, preprint cond-mat/0309196, Phys. Rev. Lett., in press.Google Scholar
  12. 12. G. Korniss, Z. Toroczkai, M.A. Novotny, and P.A. Rikvold, Phys. Rev. Lett. 84, 1351 (2000).Google Scholar
  13. 13. G. Korniss, M.A. Novotny, H. Guclu, and Z. Toroczkai, P.A. Rikvold, Science 299, 677 (2003).Google Scholar
  14. 14. R. Fujimoto, Commun. ACM 33, 30 (1990).Google Scholar
  15. 15. B.D. Lubachevsky, J. Comput. Phys. 75, 103 (1988).Google Scholar
  16. 16. M. Kardar, G. Parisi, Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986).Google Scholar
  17. 17. A.-L. Barabási and H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).Google Scholar
  18. 18. G. Korniss, M.A. Novotny, P.A. Rikvold, H. Guclu, and Z. Toroczkai, Materials Research Society Symposium Proceedings Series Vol. 700, pp. 297-308 (2002).Google Scholar
  19. 19. G. Korniss, M.A. Novotny, A.K. Kolakowska, and H. Guclu, SAC 2002, Proceedings of the 2002 ACM Symposium on Applied Computing, pp. 132-138, (2002).Google Scholar
  20. 20. S.H. Strogatz, Nature 410, 268 (2001).Google Scholar
  21. 21. M. Kardar, Phys. Rev. B 28, 244 (1983).Google Scholar
  22. 22. M. E. J. Newman, C. Moore, and D. J. Watts, Phys. Rev. Lett. 84, 3201 (2000).Google Scholar
  23. 23. This and other scaling laws are covered in G. Parisi, Statistical Field Theory (Perseus Books, Advanced Book Classics, Reading, 1998).Google Scholar
  24. 24. M. E. Fisher, J. Math. Phys. 5, 944 (1964).Google Scholar
  25. 25. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, (Oxford Science Publications, 2001).Google Scholar
  26. 26. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).Google Scholar
  27. 27. J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).Google Scholar
  28. 28. T. E. Harris, Ann. Probab. 2, 969 (1974); J. Marro and R. Dickman, Nonequilibrium Phase Transitions in Lattice Models, (Cambridge University Press, 1999).Google Scholar
  29. 29. N. Zekri and J. P. Clerc, Phys. Rev. E 64, 056115 (2001).Google Scholar
  30. 30. S.F. Edwards and D.R. Wilkinson, Proc. R. Soc. London, Ser A 381, 17 (1982).Google Scholar
  31. 31. M.E.J. Newman, J. Stat. Phys. 101, 819 (2000).Google Scholar
  32. 32. M.E.J. Newman and D.J. Watts, Phys. Lett. A 263, 341 (1999).Google Scholar
  33. 33. R. Monasson, Eur. Phys. J. B 12, 555 (1999).Google Scholar
  34. 34. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery Numerical Recipes in C, 2nd ed. (Cambridge Univ. Press, Cambridge, 1995), Sects. 11.2 and 11.3Google Scholar
  35. 35. J. Rammer, Rev. Mod. Phys. 63, 781 (1991).Google Scholar
  36. 36. Z. Toroczkai, G. Korniss, S. Das Sarma, and R.K.P. Zia, Phys. Rev. E 62, 276 (2000).Google Scholar
  37. 37. M. B. Hastings, to be published.Google Scholar
  38. 38. I.M. Lifshitz, Sov. Phys.-JETP 17, 1159 (1963).Google Scholar
  39. 39. A.J. Bray and G.J. Rodgers, Phys. Rev. B 38, 11461 (1988).Google Scholar

Authors and Affiliations

  • Matthew B. Hastings
    • 1
  • Balázs Kozma
    • 2
  1. 1.Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545USA
  2. 2.Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180USA

Personalised recommendations