Small-World Synchronized Computing Networks for Scalable Parallel Discrete-Event Simulations

  • Hasan Guclu
  • György Korniss
  • Zoltán Toroczkai
  • Mark A. Novotny
Part II Network Dynamics
Part of the Lecture Notes in Physics book series (LNP, volume 650)


We study the scalability of parallel discrete-event simulations for arbitrary short-range interacting systems with asynchronous dynamics. When the synchronization topology mimics that of the short-range interacting underlying system, the virtual time horizon (corresponding to the progress of the processing elements) exhibits Kardar-Parisi-Zhang-like kinetic roughening. Although the virtual times, on average, progress at a nonzero rate, their statistical spread diverges with the number of processing elements, hindering efficient data collection. We show that when the synchronization topology is extended to include quenched random communication links between the processing elements, they make a close-to-uniform progress with a nonzero rate, without global synchronization. We discuss in detail a coarse-grained description for the small-world synchronized virtual time horizon and compare the findings to those obtained by “simulating the simulations” based on the exact algorithmic rules.


Time Horizon Regular Lattice Local Slope Actual PDES Virtual Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. S.H. Strogatz, Nature 410, 268 (2001).Google Scholar
  2. 2. R. Fujimoto, Commun. ACM 33, 30 (1990).Google Scholar
  3. 3. D.M. Nicol, R.M. Fujimoto, Ann. Oper. Res. 53, 249 (1994).Google Scholar
  4. 4. B.D. Lubachevsky, Bell Labs Tech. J. 5 April-June 2000, 134 (2000).Google Scholar
  5. 5. A.G. Greenberg et al. in Proc. 8th Workshop on Parallel and Distributed Simulation (PADS’94), Edinburgh, UK, 1994 (SCS, San Diego, CA, 1994), p. 187.Google Scholar
  6. 6. E. Deelman, B.K. Szymanski, T. Caraco, in Proc. 28th Winter Simulation Conference, (ACM, New York, 1996), p. 1191.Google Scholar
  7. 7. D.M. Nicol, Proc. 1988 SCS Multiconference, Simulation Series, SCS, Vol. 19, p. 141 (1988).Google Scholar
  8. 8. G. Korniss, M.A. Novotny, P.A. Rikvold, J. Comput. Phys. 153, 488 (1999).Google Scholar
  9. 9. G. Korniss, C.J. White, P.A. Rikvold, M.A. Novotny, Phys. Rev. E 63, 016120 (2001).Google Scholar
  10. 10. G. Korniss, P.A. Rikvold, M.A. Novotny, Phys. Rev. E 66, 056127 (2002).Google Scholar
  11. 11. B.D. Lubachevsky, Complex Syst. 1, 1099 (1987).Google Scholar
  12. 12. B.D. Lubachevsky, J. Comput. Phys. 75, 103 (1988).Google Scholar
  13. 13. D.R. Jefferson, ACM Trans. Prog. Lang. and Syst. 7, 404 (1985).Google Scholar
  14. 14. A.G. Greenberg, S. Shenker, and A.L. Stolyar, Performance Eval. Rev. 24, 91 (1996).Google Scholar
  15. 15. Blue Gene/L project, partnership between IBM and DoE, announced Nov.9, 2001; 64K processors, expected scale 200 teraflops, a step towards a petaflop scale; expected completion 2005; IBM Research Report, RC22570 (W0209-033) September 10, 2002.Google Scholar
  16. 16. See, e.g., and Scholar
  17. 17. S. Kirkpatrick, Science 299, 668 (2003).Google Scholar
  18. 18. P.M.A. Sloot, B.J. Overeinder, A. Schoneveld, Comput. Phys. Commun. 142, 76 (2001).Google Scholar
  19. 19. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).Google Scholar
  20. 20. D.J. Watts and S.H. Strogatz, Nature 393, 440 (1998).Google Scholar
  21. 21. G. Korniss, M.A. Novotny, H. Guclu, Z. Toroczkai, and P.A. Rikvold, Science 299, 677 (2003).Google Scholar
  22. 22. K.M. Chandy, J. Misra, Commun. ACM 24, 198 (1981).Google Scholar
  23. 23. R.E. Felderman and L. Kleinrock, ACM Trans. Model. Comput. Simul. 1, 386 (1991).Google Scholar
  24. 24. D.M. Nicol, ACM Trans. Model. Comput. Simul. 1, 24 (1991).Google Scholar
  25. 25. G. Korniss, Z. Toroczkai, M.A. Novotny, and P.A. Rikvold, Phys. Rev. Lett. 84, 1351 (2000).Google Scholar
  26. 26. Z. Toroczkai, G. Korniss, S. Das Sarma, and R.K.P. Zia, Phys. Rev. E 62, 276 (2000).Google Scholar
  27. 27. M. Kardar, G. Parisi, Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986).Google Scholar
  28. 28. A.-L. Barabási and H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).Google Scholar
  29. 29. S.F. Edwards and D.R. Wilkinson, Proc. R. Soc. London, Ser A 381, 17 (1982).Google Scholar
  30. 30. G. Korniss, M.A. Novotny, A.K. Kolakowska, and H. Guclu, SAC 2002, Proceedings of the 2002 ACM Symposium on Applied Computing, pp. 132-138, (2002).Google Scholar
  31. 31. A. Kolakowska, M. A. Novotny, and G. Korniss, Phys. Rev. E 67, 046703 (2003).Google Scholar
  32. 32. A. Kolakowska, M. A. Novotny, and P.A. Rikvold, Phys. Rev. E 68, 046705 (2003).Google Scholar
  33. 33. A. Kolakowska and M. A. Novotny, Phys. Rev. B 69, 075407 (2004).Google Scholar
  34. 34. J. Krug and P. Meakin, J. Phys. A 23, L987 (1990).Google Scholar
  35. 35. Z. Toroczkai, G. Korniss, M. A. Novotny, and H. Guclu, in Computational Complexity and Statistical Physics, edited by A. Percus, G. Istrate, and C. Moore, Santa Fe Institute Studies in the Sciences of Complexity Series (Oxford University Press, 2004, in press); arXiv:cond-mat/0304617 (2003).Google Scholar
  36. 36. S. Raychaudhuri, M. Cranston, C. Przybyla, and Y. Shapir, Phys. Rev. Lett. 87, 136101 (2001).Google Scholar
  37. 37. E. Marinari, A. Pagnani, G. Parisi, and Z. Rácz, Phys. Rev. E 65, 026136 (2002).Google Scholar
  38. 38. Z. Rácz, private communications.Google Scholar
  39. 39. D.J. Watts, Small Worlds (Princeton Univ. Press, Princeton, 1999).Google Scholar
  40. 40. M.E.J. Newman, J. Stat. Phys. 101, 819 (2000).Google Scholar
  41. 41. M.E.J. Newman and D.J. Watts, Phys. Lett. A 263, 341 (1999).Google Scholar
  42. 42. R. Monasson, Eur. Phys. J. B 12, 555 (1999).Google Scholar
  43. 43. B. Kozma and G. Korniss, in Computer Simulation Studies in Condensed Matter Physics XVI, edited by D.P. Landau, S.P. Lewis, and H.-B. Schüttler, Springer Proceedings in Physics (Springer, Berlin, 2004, in press); arXiv:cond-mat/0305025 (2003).Google Scholar
  44. 44. B. Kozma, M.B. Hastings, and G. Korniss, arXiv:cond-mat/0309196: Phys. Rev. Lett., in press (2004).Google Scholar
  45. 45. Réka Albert and Albert-László Barabási, Rev. Mod. Phys. 74, 47 (2002).Google Scholar
  46. 46. H. Guclu, G. Korniss, M.A. Novotny, and Z. Toroczkai, in preparation.Google Scholar
  47. 47. A.A. Middleton, Phys. Rev. Lett. 68, 670 (1992).Google Scholar
  48. 48. M.B. Hastings, private communications (2003).Google Scholar
  49. 49. R.A. Fisher and L.H.C. Tippett, Proc. Camb. Philos. Soc. 24, 180 (1928)Google Scholar
  50. 50. E.J. Gumbel, Statistics of Extremes (Columbia University Press, New York, 1958).Google Scholar
  51. 51. Extreme Value Theory and Applications, edited by J. Galambos, J. Lechner, and E. Simin (Kluwer, Dordrecht, 1994).Google Scholar
  52. 52. Y. Rabani, A. Sinclair, and R. Wanka, Proceedings of the 39th Annual Symposium on Foundations of Computer Science (IEEE Comput. Soc, Los Alamitos, CA, 1998) pp. 694-703.Google Scholar
  53. 53. H. Guclu and G. Korniss, arXiv:cond-mat/0311575 (2003).Google Scholar
  54. 54. S.T. Bramwell, P.C.W. Holdsworth, and J.-F. Plinton, Nature 396 552 (1998).Google Scholar
  55. 55. S.T. Bramwell et al., Phys. Rev. Lett. 84 3744 (2000).Google Scholar
  56. 56. S.T. Bramwell et al., Phys. Rev. E 63 041106 (2001).Google Scholar
  57. 57. T. Antal, M. Droz, G. Györgyi, and Z. Rácz, Phys. Rev. Lett. 87, 240601 (2001).Google Scholar
  58. 58. S. C. Chapman, G. Rowlands, and N. W. Watkins, Nonlinear Processes in Geophysics 9, 409 (2002); arXiv:cond-mat/0106015.Google Scholar
  59. 59. V. Aji and N. Goldenfeld, Phys. Rev. Lett. 86, 1007 (2001).Google Scholar
  60. 60. J.-P. Bouchaud and M. Mézard, J. Phys. A 30, 7997 (1997).Google Scholar
  61. 61. A. Baldassarri, Statistics of Persistent Extreme Events, Ph.D. Thesis, De l’Université Paris XI Orsay (2000).Google Scholar
  62. 62. H. Guclu and G. Korniss, in preparation.Google Scholar
  63. 63. A.-L. Barabási and R. Albert, Science 286 509 (1999).Google Scholar
  64. 64. A. Barrat, M. Weigt, Eur. Phys. J. B 13, 547 (2000).Google Scholar
  65. 65. M. Gitterman, J. Phys. A 33, 8373 (2000).Google Scholar
  66. 66. B.J. Kim et al, Phys. Rev. E 64, 056135 (2001).Google Scholar
  67. 67. H. Hong, B.J. Kim, M.Y. Choi, Phys. Rev. E 66, 018101 (2002).Google Scholar
  68. 68. H. Hong, M.Y. Choi, and B.J. Kim, Phys. Rev. E 65, 047104 (2002).Google Scholar
  69. 69. C.P. Herrero, Phys. Rev. E 65, 066110 (2002).Google Scholar
  70. 70. M.A. Novotny and Shannon M. Wheeler, Braz. J. Phys., Proceedings for the III Brazilian Meeting on Simulational Physics (2003); arXiv:cond-mat/0308602 (2003).Google Scholar
  71. 71. M.B. Hastings, Phys. Rev. Lett. 91, 098701 (2003).Google Scholar

Authors and Affiliations

  • Hasan Guclu
    • 1
  • György Korniss
    • 1
  • Zoltán Toroczkai
    • 2
  • Mark A. Novotny
    • 3
  1. 1.Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180USA
  2. 2.Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, MS B258 Los Alamos, NM 87545USA
  3. 3.Department of Physics and Astronomy and ERC Center for Computational Sciences, Mississippi State University, P.O. Box 5167, Mississippi State, MS 39762USA

Personalised recommendations