Skip to main content

On the Analysis of Backtrack Proceduresfor the Colouring of Random Graphs

  • Part II Network Dynamics
  • Chapter
  • First Online:
Complex Networks

Part of the book series: Lecture Notes in Physics ((LNP,volume 650))

Abstract

Backtrack search algorithms are procedures capable of deciding whether a decision problem has a solution or not through a sequence of trials and errors. Analysis of the performances of these procedures is a long-standing open problem in theoretical computer science. I present some statistical physics ideas and techniques to attack this problem. The approach is illustrated on the colouring of random graphs, and some current limitations and perspectives are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Knuth, D.E. Estimating the efficiency of backtrack programs, Math. Comp. 29, 12-136 (1975).

    Google Scholar 

  • 2. Garey, M. R. and Johnson, D. S, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, San Fransico (1979).

    Google Scholar 

  • 3. Knuth, D.E. Selected Papers on Analysis of Algorithms, Center for the Study of Language and Information Lecture Notes 102, Stanford CA (2000).

    Google Scholar 

  • 4. Cocco, S. and Monasson, R. Trajectories in phase diagrams, growth processes and computational complexity: how search algorithms solve the 3-Satisfiability problem, Phys. Rev. Lett. 86, 1654 (2001); Analysis of the computational complexity of solving random satisfiability problems using branch and bound search algorithms, Eur. Phys. J. B 22, 505 (2001).

    Google Scholar 

  • 5. Davis, M., Logemann, G., Loveland, D. A machine program for theorem proving. Communications of the ACM 5, 394-397 (1962).

    Google Scholar 

  • 6. Mitchell, D., Selman, B. and Levesque, H. Hard and Easy Distributions of SAT Problems, Proc. of the Tenth Natl. Conf. on Artificial Intelligence (AAAI-92), 440-446, The AAAI Press / MIT Press, Cambridge, MA (1992).

    Google Scholar 

  • 7. Turner, J. S. Almost All k-Colorable Graphs Are Easy to Color, Journal of Algorithms 9, 63–82 (1988).

    Google Scholar 

  • 8. Achlioptas, D. and Friedgut, E. A sharp threshold for k-colorability, Random Structures and Algorithms 14(1), 63–70 (1999).

    Google Scholar 

  • 9. Achlioptas, D. and Moore, C. Almost all graphs with average degree 4 are 3-colorable Proc. on 34th Annual ACM Symposium on Theory of Computing, May 19-21 , Montreal, Quebec, Canada, ACM, Montreal, 199–208 (2002)

    Google Scholar 

  • 10. Culbersome, J. C. and Gent, I. P. Frozen development in graph coloring, Theor. Comp. Sci. 265(1-2), 227–264 (2001).

    Google Scholar 

  • 11. Mulet, R., Pagnani, A., Weigt, M. and Zecchina R. Coloring random graphs. Phys. Rev. Lett. 89, 268701 (2002).

    Google Scholar 

  • 12. Chvàtal, V. and Szmeredi, E. Many hard examples for resolution, Journal of the ACM 35, 759–768 (1988).

    Google Scholar 

  • 13. Achlioptas, D. and Molloy, M. Analysis of a List-colouring Algorithm on a Random Graph, Proc. of FOCS 97 204 (1997).

    Google Scholar 

  • 14. Jia, H., and Moore, C. How much backtracking does it take to color sparse random graphs? Rigorous results on heavy tails. preprint (2003).

    Google Scholar 

  • 15. Cocco, S. and Monasson R. Heuristic average-case analysis of backtrack resolution of random 3-Satisfiability instances, to appear in Theoretical Computer Science (2004).

    Google Scholar 

  • 16. Ein-Dor, L. and Monasson, R. The dynamics of proving uncolorability of large random graphs. I. symmetric colouring heuristic, J. Phys. A 36, 11055 (2003).

    Google Scholar 

  • 17. Beame, P., Culberson, J., Mitchell, D. and Moore, C. The resolution complexity of random graph k-colorability, preprint (2004).

    Google Scholar 

  • 18. Achlioptas, D. Lower bounds for random 3-SAT via differential equations, Theor. Comp. Sci. 265, 159–185 (2001).

    Google Scholar 

  • 19. Griffiths, R.B., Weng, C-H. and Langer, J.S. Relaxation times for metastable states in the mean-field model of a ferromagnet, Phys. Rev. 149, 301 (1966).

    Google Scholar 

  • 20. Deroulers, C. and Monasson, R. Field theoretic approach to metastability in the contact process. Phys. Rev. E 69 016126 (2004).

    Google Scholar 

  • 21. Majumdar, S.N. and Krapivsky, P.I. Extreme value statistics and traveling fronts: an application to computer science. Phys. Rev. E 65, 036127 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eli Ben-Naim Hans Frauenfelder Zoltan Toroczkai

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Monasson, R. On the Analysis of Backtrack Proceduresfor the Colouring of Random Graphs. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds) Complex Networks. Lecture Notes in Physics, vol 650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44485-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44485-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22354-2

  • Online ISBN: 978-3-540-44485-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics