Advertisement

Extremal Properties of Random Structures

  • Eli Ben-Naim
  • Paul L. Krapivsky
  • Sidney Redner
Part II Network Dynamics
Part of the Lecture Notes in Physics book series (LNP, volume 650)

Abstract

The extremal characteristics of random structures, including trees, graphs, and networks, are discussed. A statistical physics approach is employed in which extremal properties are obtained through suitably defined rate equations. A variety of unusual time dependences and system-size dependences for basic extremal properties are obtained.

Keywords

System Size Random Graph Degree Distribution Random Tree Random Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. See, e. g., The Guiness Book of World Records (Downtown Book Center, Inc., 2001).Google Scholar
  2. 2. E. J. Gumbel, Statistics of Extremes (Columbia University Press, New York, 1958).Google Scholar
  3. 3. J. Galambos, The Asymptotic Theory of Extreme Order Statistics (R.E. Krieger Publishing Co., Malabar, 1987).Google Scholar
  4. 4. R. E. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer-Verlag, New York, 1985).Google Scholar
  5. 5. D. Carpentier and P. Le Doussal, Phys. Rev. E 63, 026110 (2001)Google Scholar
  6. 6. D.S. Dean and S.N. Majumdar, Phys. Rev. E 64, 046121 (2001)Google Scholar
  7. 7. S. Raychaudhuri, M. Cranston, C. Pryzybla, and Y. Shapir, Phys. Rev. Lett. 87, 136101 (2001)Google Scholar
  8. 8. H. M. Mahmoud, Evolution of Random Search Trees (John Wiley & Sons, New York, 1992).Google Scholar
  9. 9. D. E. Knuth, The Art of Computer Programming, vol. 3, Sorting and Searching (Addison-Wesley, Reading, 1998).Google Scholar
  10. 10. W. Szpankowski, Average Case Analysis of Algorithms on Sequences (John Wiley & Sons, New York, 2001).Google Scholar
  11. 11. M. V. Smoluchowski, Z. Phys. Chem. 92, 215 (1917).Google Scholar
  12. 12. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).Google Scholar
  13. 13. R. van Zon, H. van Beijeren, and Ch. Dellago, Phys. Rev. Lett. 80, 2035 (1998).Google Scholar
  14. 14. B. Bollobás, Random Graphs (Academic Press, London, 1985).Google Scholar
  15. 15. S. Janson, T. Łuczak, and A. Rucinski, Random Graphs (John Wiley & Sons, New York, 2000).Google Scholar
  16. 16. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953).Google Scholar
  17. 17. G. U. Yule, Phil. Trans. Roy. Soc. B 213, 21 (1924); The Statistical Study of Literary Vocabulary (Cambridge University Press, Cambridge, 1944).Google Scholar
  18. 18. H. A. Simon, Biometrica 42, 425 (1955); Infor. Control 3, 80 (1960).Google Scholar
  19. 19. W. Willinger, R. Govindan, S. Jamin, V. Paxson, and S. Shenker, Proc. Natl. Acad. Sci. 99, 2573 (2002).Google Scholar
  20. 20. See e.g., S. H. Strogatz, Nature 410, 268 (2001).Google Scholar
  21. 21. B. Skyrms and R. Pemantle, Proc. Natl. Acad. Sci. 97, 9340 (2000).Google Scholar
  22. 22. M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. 99, 7821 (2002).Google Scholar
  23. 23. O. C. Martin, R. Monasson, and R. Zecchina, Theor. Comput. Sci. 265, 3 (2001).Google Scholar
  24. 24. H. Nishimori, Statistical Physics of Spin Glasses and Information Processing (Oxford University Press, New York, 2001).Google Scholar
  25. 25. M. Mezard, G. Parisi, and G. Zecchina, Science 297, 812 (2002).Google Scholar
  26. 26. J. Baik, math-PR/0310347Google Scholar
  27. 27. P. L. Ferrari, M. Prähofer, H. Spohn, math-ph/0310053.Google Scholar
  28. 28. C. Knessl and W. Szpankowsky, SIAM J. Comput. 30, 923 (2000).Google Scholar
  29. 29. See e.g., the annual list of the 400 wealthiest individuals in Fortune Magazine.Google Scholar
  30. 30. T. Hattori and H. Ochiai, preprint (1998).Google Scholar
  31. 31. P. L. Krapivsky and S. N. Majumdar, Phys. Rev. Lett. 85, 5492 (2000).Google Scholar
  32. 32. B. Pittel, J. Math. Anal. Appl. 103, 461 (1984).Google Scholar
  33. 33. L. Devroye, J. ACM 33, 489 (1986).Google Scholar
  34. 34. P. Noguiera, Disc. Appl. Math. 109, 253 (2001).Google Scholar
  35. 35. S. N. Majumdar and P. L. Krapivsky, Phys. Rev. E 65, 036127 (2001).Google Scholar
  36. 36. For a recent review, see D. Aldous, Bernoulli 5, 3 (1999).Google Scholar
  37. 37. E. Ben-Naim and P. L. Krapivsky, Europhys. Lett. 65, 151 (2004).Google Scholar
  38. 38. E. Ben-Naim, P. L. Krapivsky, and S. N. Majumdar, Phys. Rev. E 64, 035101(R) (2001).Google Scholar
  39. 39. J. D. Murray, Mathematical Biology (Springer-Verlag, New York, 1989).Google Scholar
  40. 40. M. Bramson, Convergence of Solutions of the Kolmogorov Equation to Travelling Waves (American Mathematical Society, Providence, R. I., 1983).Google Scholar
  41. 41. W. van Saarloos, Phys. Rev. A 39, 6367 (1989).Google Scholar
  42. 42. E. Brunet and B. Derrida, Phys. Rev. E 56, 2597 (1997).Google Scholar
  43. 43. U. Ebert and W. van Saarloos, Phys. Rev. Lett. 80, 1650 (1998); Physica D 146, 1 (2000).Google Scholar
  44. 44. S. N. Majumdar and P. L. Krapivsky, Physica A 318, 161 (2003).Google Scholar
  45. 45. D. Stauffer, Introduction to Percolation Theory, (Taylor & Francis, London, 1985).Google Scholar
  46. 46. H. S. Wilf, Generatingfunctionology (Academic Press, Boston, 1990).Google Scholar
  47. 47. J. B. McLeod, Quart. J. Math. Oxford 13, 119 (1962); ibid 13, 193 (1962); ibid 13, 283 (1962).Google Scholar
  48. 48. E. M. Hendriks, M. H. Ernst, and R. M. Ziff, J. Stat. Phys. 31, 519 (1983).Google Scholar
  49. 49. P. L. Krapivsky and S. Redner, Phys. Rev. E 63, 066123 (2001).Google Scholar
  50. 50. P. L. Krapivsky and S. Redner, Phys. Rev. Lett. 89, 258703 (2002).Google Scholar
  51. 51. A.-L. Barabási and R. Albert, Science 286, 509 (1999).Google Scholar
  52. 52. S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys. Rev. E 63, 062101 (2001).Google Scholar
  53. 53. A. A. Moreira, J. S. de Andrade Jr., and L. A. N. Amaral, Phys. Rev. Lett. 89, 268703 (2002).Google Scholar
  54. 54. J. Stirling, Methodus Differentialis (London, 1730); see also R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science (Reading, Mass.: Addison-Wesley, 1989).Google Scholar
  55. 55. http://indexes.dowjones.com.Google Scholar
  56. 56. A. A. Lushnikov, J. Colloid Inter. Sci. 65, 276 (1977).Google Scholar
  57. 57. J. L. Spouge, J. Colloid Inter. Sci. 107, 38 (1985).Google Scholar
  58. 58. P. G. J van Dongen and M. H. Ernst, J. Stat. Phys. 49, 879 (1987).Google Scholar

Authors and Affiliations

  • Eli Ben-Naim
    • 1
  • Paul L. Krapivsky
    • 2
  • Sidney Redner
    • 2
  1. 1.Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 
  2. 2.Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 

Personalised recommendations