Tomography and Stability of Complex Networks

  • Tomer Kalisky
  • Reuven Cohen
  • Daniel ben-Avraham
  • Shlomo Havlin
Part I Network Structure
Part of the Lecture Notes in Physics book series (LNP, volume 650)


We study the structure of generalized random graphs with a given degree distribution P(k), and review studies on their behavior under both random breakdown of nodes and intentional attack on the most highly connected nodes. We focus on scale free networks, where \(P(k)\propto k^{-\l}\), for m<k<K. We first examine the “Tomography” of these networks, i.e. the structure of layers around a network node. It is shown that the distance distribution of all nodes from the maximally connected node of the network consists of two regimes. The first is characterized by rapid growth in the number of nodes, and the second decays exponentially. We also show analytically that the nodes degree distribution at each layer is a power law with an exponential cut-off. We then show that scale free networks with \(\l<3\) are robust to random breakdown, but vulnerable to intentional attack. We also describe the behavior of the network near the phase transition and show that the critical exponents are influenced by the scale free nature of the network. We show that the critical exponent for the infinite cluster size behaves as \(\beta=1/|\l-3|\), and the exponent for the finite clusters size distribution behaves as \(\tau={\frac{2\l-3}{\l-2}}\), for \(2<\l<4\). For \(\l>4\) the exponents are β=1 and τ=2.5 as in normal infinite dimensional percolation. It is also shown that for all \(\l>3\) the exponent for the correlation length is ν=1 and formulas for the fractal dimensions are obtained. The size of the largest cluster at the transition point, known to scale as N2/3 in regular random graphs, is shown to scale as \(N^{(\l-2)/(\l-1)}\) for \(3<\l<4\) and as N2/3 for \(\l>4\).


Critical Exponent Random Graph Degree Distribution Degree Sequence Cayley Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. R. Albert, H. Jeong, and A. L. Barabási, Nature, 406, 6794, 378 (2000).Google Scholar
  2. 2. R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev. Lett. 85, 4626 (2000).Google Scholar
  3. 3. D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. Lett. 85, 5468 (2000)..Google Scholar
  4. 4. R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev. Lett. 86, 3682 (2001).Google Scholar
  5. 5. M. E. J. Newman, S. H. Strogatz, and D. J. Watts Phys. Rev. E, 64, 026118 (2001).Google Scholar
  6. 6. M. Faloutsos, P. Faloutsos, and C. Faloutsos, ACM SIGCOMM ’99 Comput. Commun. Rev. 29, 251 (1999).Google Scholar
  7. 7. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener, Computer Networks 33, 309 (2000).Google Scholar
  8. 8. H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai and A.-L. Barabási, Nature, 407, 651 (2000).Google Scholar
  9. 9. R. Albert and A.-L. Barabasi, Rev. of Mod. Phys. 74, 47 (2002).Google Scholar
  10. 10. S. N. Dorogovtsev, and J. F. F. Mendes, Adv. in Phys., 51 (4), (2002).Google Scholar
  11. 11. M. E. J. Newman, SIAM Review 45, 167 (2003).Google Scholar
  12. 12. J. F. F. Mendes, S. N. Dorogovtsev and A. F. Ioffe, Evolution of Networks: From Biological Nets to the Internet and WWW, (Oxford University Press, 2003).Google Scholar
  13. 13. R. Pastor-Satorras and A. Vespignani, Evolution and Structure of the Internet : A Statistical Physics Approach, (Cambridge University Press, 2003).Google Scholar
  14. 14. R. Cohen, D. Dolev, S. Havlin, T. Kalisky, O. Mokryn and Y. Shavitt, cond-mat/0305582.Google Scholar
  15. 15. H. Jeong, S. Mason, A.-L. Barabási and Z. N. Oltvai Nature, 411, 41 (2001).Google Scholar
  16. 16. A. Bunde, and S. Havlin (editors), Fractals and Disordered System (Springer, New York, 1996).Google Scholar
  17. 17. D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd edition (Taylor and Francis, London, 1991).Google Scholar
  18. 18. W. Feller, An Introduction to Probability Theory and Its Applications (John Wiley & Sons).Google Scholar
  19. 19. M. Molloy and B. Reed, Random Structures and Algorithms 6, 161 (1995).Google Scholar
  20. 20. B. Bollobás, Random Graphs. pp. 123-136 (Academic Press, London, 1985).Google Scholar
  21. 21. M. Molloy and B. Reed, Combinatorics, Probability and Computing 7, 295 (1998).Google Scholar
  22. 22. W. Aiello, F. Chung and L. Lu, Proc. 32nd ACM Symp. Theor. Comp., (2000).Google Scholar
  23. 23. R. Cohen and S. Havlin, Phys. Rev. Lett, 90, 058701 (2003).Google Scholar
  24. 24. S.N. Dorogovtsev, J. F. F.  Mendes, and A.N. Samukhin, Nuclear Physics B 653 (3), 307 (2003).Google Scholar
  25. 25. B. Bollobas and O. Riordan, in Handbook of Graphs and Networks, Eds. S. Bornholdt and H. G. Schuster, (Wiley-VCH, 2002).Google Scholar
  26. 26. B. Bollobás, Europ. J. Combinatorics 1, 311-316 (1980).Google Scholar
  27. 27. A. F. Rozenfeld, R. Cohen, D. ben-Avraham and S. Havlin, Phys. Rev. Lett. 89, 218701 (2002).Google Scholar
  28. 28. Z. Burda and A. Krzywicki, Phys. Rev. E 67, 046118 (2003).Google Scholar
  29. 29. C. P. Warren, L. M. Sander and I. M. Sokolov, Phys. Rev. E 66, 56105 (2002).Google Scholar
  30. 30. R. Xulvi-Brunet, W. Pietsch and I.M. Sokolov, Phys. Rev. E 68, 036119 (2003).Google Scholar
  31. 31. R. Cohen, S. Havlin and D. ben-Avraham, Chap. 4 in Handbook of Graphs and Networks, Eds. S. Bornholdt and H. G. Schuster, (Wiley-VCH, 2002).Google Scholar
  32. 32. S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys. Rev. E 63, 062101 (2001).Google Scholar
  33. 33. M. E. J. Newman, Phys. Rev. Lett 89, 208701 (2002).Google Scholar
  34. 34. A. Vazquez and R. Pastor-Satorras and A. Vespignani cond-mat/0206084 (2002).Google Scholar
  35. 35. S. Maslov and K. Sneppen, Science 296, 910 (2002).Google Scholar
  36. 36. L. A. Adamic, R. M. Lukose, A. R. Punyani and B. A. Huberman, Phys. Rev. E 64, 046135 (2001).Google Scholar
  37. 37. D. J. Watts, P. S. Dudds and M. E. J. Newman, Science 296, 1302 (2002).Google Scholar
  38. 38. K. Erez, MSc. thesis (2001), Bar-Ilan University.Google Scholar
  39. 39. R. Cohen, D. ben-Avraham and S. Havlin, Phys. Rev. E 66, 036113 (2002).Google Scholar
  40. 40. D. ben-Avraham and S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, 2000).Google Scholar
  41. 41. R. Pastor-Sattoras and A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001).Google Scholar
  42. 42. Y. Moreno, R. Pastor-Satorras, and A. Vespignani Eur. Phys. J. B 26, 521 (2002).Google Scholar
  43. 43. D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman, and S. H. Strogatz, Phys. Rev. E, 64, 041902 (2001).Google Scholar
  44. 44. S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys. Rev. E 64, 066110 (2001).Google Scholar
  45. 45. G. H. Weiss, Aspects and Applications of the Random Walk (North-Holland, Amsterdam, 1994).Google Scholar
  46. 46. Z. Burda, J. D. Curreira, and A. Krzywicki, Phys. Rev. E 64, 046118 (2001).Google Scholar
  47. 47. F. Chung and L. Lu, Adv. Appl. Math., 26, 257, (2001).Google Scholar
  48. 48. D. Dolev, O. Mokryn and Y. Shavitt, IEEE INFOCOM’03 (2003).Google Scholar
  49. 49. K.-I. Goh, B. Kahng and D. Kim, Phys. Rev. Lett. 87, 278701 (2001).Google Scholar
  50. 50. K.-I. Goh, E. Oh, H. Jeong, B. Kahng and D. Kim Proc. Natl. Acad. Sci. USA 99, 12583 (2002).Google Scholar
  51. 51. R. Pastor-Sattoras and A. Vespignani, Phys. Rev. E. 63, 066117 (2001).Google Scholar
  52. 52. R. Pastor-Satorras, and A. Vespignani Phys. Rev. E 65, 036104 (2002).Google Scholar
  53. 53. Z. Dezso, A.-L. Barabasi, Phys. Rev. E 65, 055103 (R) (2002).Google Scholar
  54. 54. R. Cohen, D. ben-Avraham and S. Havlin, Phys. Rev. Lett. 91, 247901 (2003).Google Scholar

Authors and Affiliations

  • Tomer Kalisky
    • 1
  • Reuven Cohen
    • 1
    • 2
  • Daniel ben-Avraham
    • 3
  • Shlomo Havlin
    • 1
  1. 1.Minerva Center and Department of Physics, Bar-Ilan University, Ramat-GanIsrael
  2. 2.Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, RehovotIsrael
  3. 3.Department of Physics, Clarkson University, Potsdam, NY 13699USA

Personalised recommendations