Advertisement

The Anomalous Magnetic Moment of the Muon: A Theoretical Introduction

  • Marc Knecht
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 629)

Abstract

In February 2001, the Muon (g-2) Collaboration of the E821 experiment at the Brookhaven AGS released a new value of the anomalous magnetic moment of the muon a μ , measured with an unprecedented accuracy of 1.3 ppm [parts per million]. This annoucement has caused quite some excitement in the particle physics community. Indeed, this experimental value was claimed to show a deviation of 2.6 σ with one of the most accurate evaluations of the anomalous magnetic moment of the muon within the standard model. It was subsequently shown that a sign error in one of the theoretical contributions was responsible for a sizeable part of this discrepancy, which eventually only amounted to 1.6 σ. However, this event had the merit to draw the attention to the fact that low energy but high precision experiments represent real potentialities, complementary to the high energy accelerator programs, for evidencing possible new degrees of freedom, supersymmetry or whatever else, beyond those described by the standard model of electromagnetic, weak, and strong interactions.

Keywords

Form Factor Electric Dipole Moment Vacuum Polarization Anomalous Magnetic Moment Electromagnetic Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. T. Kinoshita Ed., Quantum Electrodynamics, World Scientific Publishing Co. Pte. Ltd., 1990.Google Scholar
  2. 2. B. E. Lautrup, A. Peterman and E. de Rafael, Phys. Rept. 3, 193 (1972).Google Scholar
  3. 3. J. Calmet, S. Narison, M. Perrottet and E. de Rafael, Rev. Mod. Phys. 49, 21 (1977).Google Scholar
  4. 4. A. Czarnecki and W. J. Marciano, Nucl. Phys. B (Proc. Suppl.) 76, 245 (1998).Google Scholar
  5. 5. V. W. Hughes and T. Kinoshita, Rev. Mod. Phys. 71, S133 (1999).Google Scholar
  6. 6. K. Melnikov, Int. J. Mod. Phys. A 16, 4591 (2001).Google Scholar
  7. 7. E. de Rafael, arXiv:hep-ph/0208251.Google Scholar
  8. 8. A. Nyffeler, to appear in the proceedings of the 38th Rencontres de Moriond on Electroweak Interactions and Unified Theories, Les Arcs, 15-22 March 2003, and arXiv:hep-ph/0305135.Google Scholar
  9. 9. A. Czarnecki and W. J. Marciano, Phys. Rev. D 64, 013014 (2001).Google Scholar
  10. 10. A list of recent papers on the subject can be found under the URL http://www.slac.stanford.edu/spires/find/hep/www?c=PRLTA,86,2227.Google Scholar
  11. 11. L. L. Foldy, Phys. Rev. 87, 688 (1952); Rev. Mod. Phys. 30, 471 (1958).Google Scholar
  12. 12. Ya. B. Zeldovich, Soviet Phys. JETP 6, 1184 (1958).Google Scholar
  13. 13. Ya. B. Zeldovich and A. M. Perelomov, Soviet Phys. JETP 12, 777 (1961).Google Scholar
  14. 14. R. E. Marshak, Riazuddin, and C. P. Ryan, Theory of Weak Interactions in Particle Physics, John Wiley and Sons Inc., 1969.Google Scholar
  15. 15. S. J. Brodsky and J. D. Sullivan, Phys. Rev. 156, 1644 (1967).Google Scholar
  16. 16. R. Barbieri, J. A. Mignaco and E. Remiddi, Nuovo Cimento 11A, 824 (1972).Google Scholar
  17. 17. H. Pietschmann, Zeit. f. Phys. 178, 409 (1964).Google Scholar
  18. 18. T. Appelquist and J. Carazzone, Phys. Rev. D 11, 2856 (1975).Google Scholar
  19. 19. C. Bouchiat, J. Iliopoulos and P. Meyer, Phys. Lett. B38, 519 (1972).Google Scholar
  20. 20. D. J. Gross and R. Jackiw, Phys. Rev. D 6, 477 (1972).Google Scholar
  21. 21. C. P. Korthals Altes and M. Perrottet, Phys. Lett. B 39, 546 (1972).Google Scholar
  22. 22. T. Sterling and M. J. Veltman, Nucl. Phys. B 189, 557 (1981).Google Scholar
  23. 23. E. d’Hoker and E. Farhi, Nucl. Phys. B248, 59, 77 (1984).Google Scholar
  24. 24. T. Kinoshita, Nuovo Cimento 51B, 140 (1967).Google Scholar
  25. 25. B. E. Lautrup and E. de Rafael, Nucl. Phys. B70, 317 (1974).Google Scholar
  26. 26. E. de Rafael and J. L. Rosner, Ann. Phys. (N. Y.) 82, 369 (1974).Google Scholar
  27. 27. T. Kinoshita and W. J. Marciano, Theory of the Muon Anomalous Magnetic Moment, in [1], p. 419.Google Scholar
  28. 28. B. Kayser, Phys. Rev. D 26, 1662 (1982).Google Scholar
  29. 29. R. N. Mohapatra and P. B. Pal, Massive Neutrinos in Physics and Astrophysics, World Scientific Publishing Co. Pte. Ltd., 1991.Google Scholar
  30. 30. J. E. Nafe, E. B. Nelson and I. I. Rabi, Phys. Rev. 71, 914 (1947).Google Scholar
  31. 31. H. G. Dehmelt, Phys. Rev. 109, 381 (1958).Google Scholar
  32. 32. R. S. Van Dyck, P. B. Schwinberg and H. G. Dehmelt, Phys. Rev. Lett. 59, 26 (1987).Google Scholar
  33. 33. P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 72, 351 (2000).Google Scholar
  34. 34. K. Hagiwara et al. [Particle Data Group Collaboration], Phys. Rev. D 66, 010001 (2002).Google Scholar
  35. 35. R. S. Van Dyck, Anomalous Magnetic Moment of Single Electrons and Positrons: Experiment, in [1], p. 322.Google Scholar
  36. 36. A. Rich and J. C. Wesley, Rev. Mod. Phys. 44, 250 (1972).Google Scholar
  37. 37. P. Kusch and H. M. Fowley, Phys. Rev. 72, 1256 (1947).Google Scholar
  38. 38. P. A. Franken and S. Liebes Jr., Phys. Rev. 104, 1197 (1956).Google Scholar
  39. 39. A. A. Schuppe, R. W. Pidd, and H. R. Crane, Phys. Rev. 121, 1 (1961).Google Scholar
  40. 40. D. T. Wilkinson and H. R. Crane, Phys. Rev. 130, 852 (1963).Google Scholar
  41. 41. G. Gräff, E. Klempt and G. Werth, Z. Phys. 222, 201 (1968).Google Scholar
  42. 42. J. C. Wesley and A. Rich, Phys. Rev. A 4, 1341 (1971).Google Scholar
  43. 43. R. S. Van Dyck, P. B. Schwinberg and H. G. Dehmelt, Phys. Rev. Lett. 38, 310 (1977).Google Scholar
  44. 44. F. J. M. Farley and E. Picasso, The Muon g - 2 Experiments, in [1], p. 479.Google Scholar
  45. 45. J. Bailey et al., Phys. Lett. B28, 287 (1968).Google Scholar
  46. 46. J. Bailey et al., Phys. Lett. B55, 420 (1975).Google Scholar
  47. 47. J. Bailey et al. [CERN-Mainz-Daresbury Collaboration], Nucl. Phys. B 150, 1 (1979).Google Scholar
  48. 48. R. M. Carey et al.,Phys. Rev. Lett. 82, 1632 (1999).Google Scholar
  49. 49. H. N. Brown et al.[Muon (g - 2) Collaboration], Phys. Rev. D 62, 091101(R) (2000).Google Scholar
  50. 50. H. N. Brown et al.[Muon (g - 2) Collaboration], Phys. Rev. Lett. 86, 2227 (2001).Google Scholar
  51. 51. G. W. Bennett et al.[Muon (g - 2) Collaboration], Phys. Rev. Lett. 89, 101804 (2002); Erratum-ibid. 89, 129903 (2002).Google Scholar
  52. 52. E. D. Commins, S. B. Ross, D. DeMille and B. C. Regan, Phys. Rev. A 50, 2960 (1994).Google Scholar
  53. 53. B. C. Regan, E. D. Commins, C. J. Schmidt and D. DeMille, Phys. Rev. Lett. 88, 071805 (2002).Google Scholar
  54. 54. J. L. Feng, K. T. Matchev and Y. Shadmi, Nucl. Phys. B 613, 366 (2001); Phys. Lett. B555, 89 (2003).Google Scholar
  55. 55. Y. K. Semertzidis et al., Int. J. Mod. Phys. A 16S1B, 690 (2001).Google Scholar
  56. 56. K. Ackerstaff et al. [OPAL Collaboration], Phys. Lett. B431, 188 (1998).Google Scholar
  57. 57. M. Acciarri et al. [L3 Collaboration], Phys. Lett. B434, 169 (1998).Google Scholar
  58. 58. S. Narison, Phys. Lett. B513, 53 (2001); Erratum-ibid. B526, 414 (2002).Google Scholar
  59. 59. J. Schwinger, Phys. Rev. 73, 413 (1948); 76, 790 (1949).Google Scholar
  60. 60. R. Karplus and N. M. Kroll, Phys. Rev. 77, 536 (1950).Google Scholar
  61. 61. A. Peterman, Helv. Phys. Acta 30, 407 (1957).Google Scholar
  62. 62. C. M. Sommerfield, Phys. Rev. 107, 328 (1957).Google Scholar
  63. 63. C. M. Sommerfield, Ann. Phys. (N.Y.) 5, 26 (1958).Google Scholar
  64. 64. G. S. Adkins, Phys. Rev. D 39, 3798 (1989).Google Scholar
  65. 65. J. Schwinger, Particles, Sources and Fields, VolumeIII, Addison-Wesley Publishing Company, Inc., 1989.Google Scholar
  66. 66. D. Kreimer, arXiv:hep-th/9412045; D. Kreimer, J. Knot Theor. Ramifications 6, 479 (1997); D. J. Broadhurst, J. A. Gracey and D. Kreimer, Z. Phys. C 75, 559 (1997); D. J. Broadhurst and D. Kreimer, Phys. Lett. B393, 403 (1997).Google Scholar
  67. 67. D. Kreimer, Adv. Theor. Math. Phys. 2, 303 (1998).Google Scholar
  68. 68. A. Connes and D. Kreimer, Commun. Math. Phys. 199, 203 (1998).Google Scholar
  69. 69. S. Laporta and E. Remiddi, Phys. Lett. B379, 283 (1996).Google Scholar
  70. 70. R. Barbieri and E. Remiddi, Nucl. Phys. B 90, 233 (1975).Google Scholar
  71. 71. M. A. Samuel and G. Li, Phys. Rev. D 44, 3935 (1991); ibid. D 46, 4782 (1992) and D 48, 1879 (1993), errata.Google Scholar
  72. 72. S. Laporta and E. Remiddi, Phys. Lett. B265, 181 (1991).Google Scholar
  73. 73. S. Laporta, Phys. Rev. D 47, 4793 (1993).Google Scholar
  74. 74. S. Laporta, Phys. Lett. B343, 421 (1995).Google Scholar
  75. 75. S. Laporta and E. Remiddi, Phys. Lett. B356, 390 (1995).Google Scholar
  76. 76. R. Z. Roskies, E. Remiddi and M. J. Levine, Analytic evaluation of sixth-order contributions to the electron’s g factor, in [1], p. 162.Google Scholar
  77. 77. T. Kinoshita, Theory of the anomalous magnetic moment of the electron – Numerical Approach, in [1], p. 218.Google Scholar
  78. 78. J. Aldins, S. J. Brodsky, A. Dufner, and T. Kinoshita, Phys. Rev. Lett. 23, 441 (1970); Phys. Rev. D 1, 2378 (1970).Google Scholar
  79. 79. S. J. Brodsky and T. Kinoshita, Phys. Rev. D 3, 356 (1971).Google Scholar
  80. 80. J. Calmet and M. Perrottet, Phys. Rev. D 3, 3101 (1971).Google Scholar
  81. 81. J. Calmet and A. Peterman, Phys. Lett. B47, 369 (1973).Google Scholar
  82. 82. M. J. Levine and J. Wright, Phys. Rev. Lett. 26, 1351 (1971); Phys. Rev. D 8, 3171 (1973).Google Scholar
  83. 83. R. Carroll and Y. P. Yao, Phys. Lett. B48, 125 (1974).Google Scholar
  84. 84. P. Cvitanovic and T. Kinoshita, Phys. Rev. D 10, 3978, 3991, 4007 (1974).Google Scholar
  85. 85. T. Kinoshita and W. B. Lindquist, Phys. Rev. D 27, 867, 877, 886 (1983); D 39, 2407 (1989); D 42, 636 (1990).Google Scholar
  86. 86. M. Caffo, S. Turrini, and E. Remiddi, Phys. Rev. D 30, 483 (1984).Google Scholar
  87. 87. E. Remiddi and S. P. Sorella, Lett. Nuovo Cim. 44, 231 (1985).Google Scholar
  88. 88. T. Kinoshita, IEEE Trans. Instrum. Meas. 44, 498 (1995).Google Scholar
  89. 89. T. Kinoshita and M. Nio, Phys. Rev. Lett. 90, 021803 (2003).Google Scholar
  90. 90. H. Suura and E. Wichmann, Phys. Rev. 105, 1930 (1957).Google Scholar
  91. 91. A. Peterman, Phys. Rev. 105, 1931 (1957).Google Scholar
  92. 92. H. H. Elend, Phys. Lett. 20, 682 (1966); Erratum-ibid. 21, 720 (1966).Google Scholar
  93. 93. B. E. Lautrup and E. de Rafael, Phys. Rev. 174, 1835 (1968).Google Scholar
  94. 94. W. Liu et al., Phys. Rev. Lett. 82, 711 (1999).Google Scholar
  95. 95. S. Laporta, Nuovo Cimento 106A, 675 (1993).Google Scholar
  96. 96. S. Laporta and E. Remiddi, Phys. Lett. B301, 440 (1993).Google Scholar
  97. 97. A. Czarnecki, B. Krause and W. J. Marciano, Phys. Rev. Lett. 76, 3267 (1996).Google Scholar
  98. 98. B. Krause, Phys. Lett. B390, 392 (1997).Google Scholar
  99. 99. B. E. Lautrup, Phys. Lett. B32, 627 (1970).Google Scholar
  100. 100. B. E. Lautrup and E. de Rafael, Nuovo Cim. 64A, 322 (1970).Google Scholar
  101. 101. B. E. Lautrup, A. Peterman and E. de Rafael, Nuovo Cim. 1A, 238 (1971).Google Scholar
  102. 102. T. Kinoshita, Phys. Rev. D 47, 5013 (1993).Google Scholar
  103. 103. T. Kinoshita, B. Nizic, Y. Okamoto, Phys. Rev. D 41, 593 (1990).Google Scholar
  104. 104. A. S. Yelkhovsky, Sov. J. Nucl. Phys. 49, 656 (1989).Google Scholar
  105. 105. A. I. Milstein and A. S. Yelkhovsky, Phys. Lett. B233, 11 (1989).Google Scholar
  106. 106. S. G. Karshenboim, Phys. Atom. Nucl. 56, 857 (1993).Google Scholar
  107. 107. C. Bouchiat and L. Michel, J. Phys. Radium 22, 121 (1961).Google Scholar
  108. 108. L. Durand III, Phys. Rev. 128, 441 (1962); Erratum-ibid. 129, 2835 (1963).Google Scholar
  109. 109. J. Z. Bai et al. [BES Collaboration], Phys. Rev. Lett. 84, 594 (2000); Phys. Rev. Lett. 88, 101802 (2000).Google Scholar
  110. 110. R. R. Akhmetshin et al. [CMD-2 Collaboration], Phys. Lett. B527, 161 (2002).Google Scholar
  111. 111. R. Barate et al. [ALEPH Collaboration], Z. Phys. C 2, 123 (1997).Google Scholar
  112. 112. K. Ackerstaff at al. [OPAL Collaboration], Eur. J. Phys. C 7, 571 (1999).Google Scholar
  113. 113. S. Anderson et al. [CLEO Collaboration], Phys. Rev. D 61, 112002 (2000).Google Scholar
  114. 114. K. W. Edwards et al. [CLEO Collaboration], Phys. Rev. D 61, 072003 (2000).Google Scholar
  115. 115. S. Eidelman and F.Jegerlehner, Z. Phys. C 67, 585 (1995).Google Scholar
  116. 116. D. H. Brown and W. A. Worstell, Phys. Rev. D 54, 3237 (1996).Google Scholar
  117. 117. R. Alemany, M. Davier and A. Höcker, Eur. Phys. J. C 2, 123 (1998).Google Scholar
  118. 118. M. Davier and A. Höcker, Phys. Lett. B419, 419 (1998).Google Scholar
  119. 119. M. Davier and A. Höcker, Phys. Lett. B435, 427 (1998).Google Scholar
  120. 120. J. F. De Trocóniz and F. J. Ynduráin, Phys. Rev. D 65, 093001 (2002).Google Scholar
  121. 121. F. Jegerlehner, J. Phys. G 29, 101 (2003).Google Scholar
  122. 122. M. Davier, S. Eidelman, A. Höcker and Z. Zhang, Eur. Phys. J. C 27, 497 (2003).Google Scholar
  123. 123. K. Hagiwara, A. D. Martin, D. Nomura and T. Teubner, Phys. Lett. B 557, 69 (2003).Google Scholar
  124. 124. A. G. Denig et al. [the KLOE Collaboration], arXiv:hep-ex/0211024.Google Scholar
  125. 125. E. P. Solodov [BABAR collaboration], in Proc. of the e+ e- Physics at Intermediate Energies Conference ed. Diego Bettoni, and arXiv:hep-ex/0107027.Google Scholar
  126. 126. M. Perrottet and E. de Rafael, unpublished.Google Scholar
  127. 127. S. Peris, M. Perrottet and E. de Rafael, JHEP 9805, 011 (1998).Google Scholar
  128. 128. G. ‘t Hooft, Nucl. Phys. B 72, 461 (1974).Google Scholar
  129. 129. E. Witten, Nucl. Phys. B 160, 157 (1979).Google Scholar
  130. 130. J. Calmet, S. Narison, M. Perrottet and E. de Rafael, Phys. Lett. B61, 283 (1976).Google Scholar
  131. 131. T. Kinoshita, B. Nizic, Y. Okamoto, Phys. Rev. D 31, 2108 (1985).Google Scholar
  132. 132. J. Bijnens, E. Pallante and J. Prades, Nucl. Phys. B 474, 379 (1996).Google Scholar
  133. 133. M. Hayakawa, T. Kinoshita and A. I. Sanda, Phys. Rev. Lett. 75, 790 (1995); Phys. Rev. D 54, 3137 (1996).Google Scholar
  134. 134. M. Hayakawa and T. Kinoshita, Phys. Rev. D 57, 465 (1998).Google Scholar
  135. 135. M. Knecht and A. Nyffeler, Phys. Rev. D 65, 073034 (2002).Google Scholar
  136. 136. M. Hayakawa and T. Kinoshita, arXiv:hep-ph/0112102, and the erratum to [136] published in Phys. Rev. D 66, 019902(E) (2002).Google Scholar
  137. 137. J. Bijnens, E. Pallante and J. Prades, Nucl. Phys. B 626, 410 (2002).Google Scholar
  138. 138. J. Wess and B. Zumino, Phys. Lett. 37B, 95 (1971).Google Scholar
  139. 139. E. Witten, Nucl. Phys. B223, 422 (1983).Google Scholar
  140. 140. S. L. Adler, Phys. Rev. 177, 2426 (1969).Google Scholar
  141. 141. J. S. Bell and R. Jackiw, Nuovo Cimento A 60, 47 (1969).Google Scholar
  142. 142. E. de Rafael, Phys. Lett. B322, 239 (1994).Google Scholar
  143. 143. J. Bijnens and F. Persson, arXiv:hep-ph/0106130.Google Scholar
  144. 144. M. Knecht and A. Nyffeler, Eur. Phys. J. C 21, 659 (2001).Google Scholar
  145. 145. J. L. Rosner, Ann. Phys. (N.Y.) 44, 11 (1967).Google Scholar
  146. 146. M. J. Levine and R. Roskies, Phys. Rev. D 9, 421 (1974); M. J. Levine, E. Remiddi, and R. Roskies, ibid. 20, 2068 (1979).Google Scholar
  147. 147. M. Knecht, A. Nyffeler, M. Perrottet and E. de Rafael, Phys. Rev. Lett. 88, 071802 (2002).Google Scholar
  148. 148. I. Blokland, A. Czarnecki and K. Melnikov, Phys. Rev. Lett. 88, 071803 (2002).Google Scholar
  149. 149. W. J. Bardeen and A. de Gouvea, private communication.Google Scholar
  150. 150. W.A. Bardeen, R. Gastmans and B.E. Lautrup, Nucl. Phys. B46, 315 (1972).Google Scholar
  151. 151. G. Altarelli, N. Cabbibo and L. Maiani, Phys. Lett. 40B, 415 (1972).Google Scholar
  152. 152. R. Jackiw and S. Weinberg, Phys. Rev. D 5, 2473 (1972).Google Scholar
  153. 153. I. Bars and M. Yoshimura, Phys. Rev. D 6, 374 (1972).Google Scholar
  154. 154. M. Fujikawa, B.W. Lee and A.I. Sanda, Phys. Rev. D 6, 2923 (1972).Google Scholar
  155. 155. V.A. Smirnov, Mod. Phys. Lett. A 10, 1485 (1995).Google Scholar
  156. 156. S. Peris, M. Perrottet and E. de Rafael, Phys. Lett. B355, 523 (1995).Google Scholar
  157. 157. A. Czarnecki, B. Krause and W. Marciano, Phys. Rev. D 52, R2619 (1995).Google Scholar
  158. 158. T.V. Kukhto, E.A. Kuraev, A. Schiller and Z.K. Silagadze, Nucl. Phys. B 371, 567 (1992).Google Scholar
  159. 159. M. Knecht, S. Peris, M. Perrottet and E. de Rafael, JHEP 0211, 003 (2002).Google Scholar
  160. 160. A. Czarnecki, W. J. Marciano and A. Vainshtein, Phys. Rev. D 67, 073006 (2003).Google Scholar
  161. 161. A. Vainshtein, arXiv:hep-ph/0212231.Google Scholar
  162. 162. M. Knecht, S. Peris, M. Perrottet and E. de Rafael, in preparation.Google Scholar
  163. 163. G. Degrassi and G.F. Giudice, Phys. Rev. 58D (1998) 053007.Google Scholar
  164. 164. R. R. Akhmetshin et al. [CMD-2 Collaboration], arXiv:hep-ex/0308008.Google Scholar
  165. 165. M. Davier, S. Eidelman, A. Höcker and Z. Zhang, arXiv:hep-ph/0308213.Google Scholar
  166. 166. P. Achard et al. [L3 Collaboration], CERN-EP/2003-19.Google Scholar

Authors and Affiliations

  • Marc Knecht
    • 1
  1. 1.Centre de Physique Théorique, CNRS Luminy, Case 907, 13288 Marseille Cedex 9France

Personalised recommendations