Skip to main content

Approximation of 2D and 3D Models of Chemotactic Cell Movement in Vasculogenesis

  • Chapter
Math Everywhere
  • 2535 Accesses

Abstract

Cell migration plays a central role in a wide variety of biological phenomena. In the case of chemotaxis, cells (or an organism) move in response to a chemical gradient. Chemotaxis underlies many events during embryo development and in the adult body. An understanding of chemotaxis is not only gained through laboratory experiments but also through the analysis of model systems, which often are more amenable to manipulation. This work is concerned with the relaxation schemes for the numerical approximation of a 2D and 3D model for cell movement driven by chemotaxis. More precisely, we consider models arising in the description of blood vessels formation and network formation starting from a random cell distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Abbott: Biology's new dimension. Nature 424, 870–872, (2003).

    Article  Google Scholar 

  2. D. Aregba-Driollet, R. Natalini, S.Q. Tang: Diffusive kinetic explicit schemes for nonlinear degenerate parabolic systems. Math. Comp. 73, 63–94, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Carmeliet: Mechanisms of angiogenesis and arteriogenesis. Nature Medicine 6, 389-395, (2000).

    Article  Google Scholar 

  4. M.A. Chaplain: Mathematical modelling of angiogenesis. J. Neuro. 50, 37, (2000).

    Google Scholar 

  5. O. Cleaver and P. Krieg: Molecular mechanisms of vascular development. In R.P. Harvey and N. R.osenthal (eds): Heart development. Academic Press (1999), 221–252.

    Google Scholar 

  6. E. Cukierman, R. Pankov, D.R. Stevens, K.M. Yamada: Taking Cell-Matrix Adhesions to the Third Dimension. Science 294, 1708–1712 (2001)

    Article  Google Scholar 

  7. C.J. Drake, J.E. Hungerford and C.D. Little: Morphogenesis of the First Blood Vessels. Ann. New York Acad. Sci. 857, 155–179, (1998).

    Article  Google Scholar 

  8. E.A. Gaffney, K. Pugh, P.K. Maini and F. Arnold: Investigating a simple model of cutaneous wound healing angiogenesis. J. Math. Biol. 45, 337–374, (2002).

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Gamba, D. Ambrosi, A. Coniglio, A. De Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi and F. Bussolino: Percolation, Morphogenesis, and Burgers Dynamics in Blood Vessels Formation Phys. Rev. Lett. 90, 118101 (2003).

    Article  Google Scholar 

  10. A. Harten: High Resolution Schemes for Hyperbolic Conservation Laws. J. Comp. Phys. 49, 357–393, (1983).

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Jin and Z. Xin: R,unge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms. J. Comp. Phys. 122, 51–67, (1995).

    Article  MATH  Google Scholar 

  12. S. Jin and Z. Xin: The Relaxation Schemes for Systems of Conservation Laws in Arbitrary Space Dimensions. Comm. Pure and Appl. Math. 48, 235–276, (1995).

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Jin, L. Pareschi and G. Toscani: Diffusive Relaxation Schemes for Discrete-Velocity Kinetic Equations. SIAM J. Numer. Anal. 35, 2405–2439, (1998).

    Article  MATH  MathSciNet  Google Scholar 

  14. H.A. Levine, B.D. Sleeman and M. Nilsen-Hamilton: Mathematical modeling of the onset of capillary formation initiating angiogenesis. J. Math. Biol. 42, 195–238, (2001).

    Article  MATH  MathSciNet  Google Scholar 

  15. C.D. Little: Vascular morphogenesis: in vivo, in vitro, in mente. Birkhäuser, Boston (1998).

    Google Scholar 

  16. R. MH Merks, A. Newman and J.A. Glazier: Cell-Oriented Modeling of in Vitro Capillary of Blood Vessel Growth. Lecture Notes in Computer Science 3305, 425–434, (2004).

    Article  Google Scholar 

  17. G. Naldi and L. Pareschi: Numerical Schemes for Kinetic Equations in Diffusive Regimes. Appl. Math. Lett. 11, 29, (1998).

    Article  MathSciNet  Google Scholar 

  18. G. Naldi and L. Pareschi: Numerical Schemes for Hyperbolic Systems of Conservation Law with Stiff Diffusive Relaxation. SIAM J. Numer. Anal. 37, 1246–1270, (2000).

    Article  MATH  MathSciNet  Google Scholar 

  19. G. Naldi, L. Pareschi and G. Toscani: Relaxation schemes for PDEs and applications to fourth order diffusion equations. Surveys in Mathematics Applied to Industry 10, 315, (2002).

    MATH  MathSciNet  Google Scholar 

  20. L. Pardanaud, F. Yassine, and F. Dieterlen-Lievre: Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105, 473–485, (1989).

    Google Scholar 

  21. T.J. Poole, E.B. Finkelstein and C.M. Cox: The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev. Dynam. 220, 1–17, (2001).

    Article  Google Scholar 

  22. W. Risau, H. Sariola, H.G. Zerwes, J. Sasse, P. Ekblom, R. Kemler and T. Doetschmann: Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102, 471–478, (1988).

    Google Scholar 

  23. G. Serini, D. Ambrosi, E. Giraudo, L. Preziosi and F. Bussolino: Modeling the early stages of vascular network assembly. The EMBO Journal 22, 1771–1779, (2003).

    Article  Google Scholar 

  24. P.R. Sweby: High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SIAM J. Num. Anal. 21, 995–1011, (1984).

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Tosin, D. Ambrosi and L. Preziosi: Mechanics and chemotaxis in the morphogenesis of vascular networks. To appear in Bull. Mat. Biol. (2006)

    Google Scholar 

  26. S. Tong and F. Yuan: Numerical simulations of angiogenesis in the cornea. Microvasc. Res. 61, 14–27, (2001).

    Article  Google Scholar 

  27. B.M. Weinstein: What guides early embryonic blood vessel formation? Dev. Dynam. 215, 2–17, (1999).

    Article  Google Scholar 

  28. J. Wilting, S. Brand, H. Kurz and B. Christ: Development of the embryonic vascular system. Cell. Mol. Biol. Res. 41, 219–232, (1995).

    Google Scholar 

  29. V.M. Weaver, O.W. Petersen, F. Wang, C.A. Larabell, P. Briand, C. Damsky, M.J. Bissell: Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell. Biol. 137, 231–245 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Cavalli, F., Gamba, A., Naldi, G., Semplice, M. (2007). Approximation of 2D and 3D Models of Chemotactic Cell Movement in Vasculogenesis. In: Aletti, G., Micheletti, A., Morale, D., Burger, M. (eds) Math Everywhere. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44446-6_15

Download citation

Publish with us

Policies and ethics