Skip to main content

Structural Adaptation in Normal and Cancerous Vasculature

  • Chapter
Book cover Math Everywhere

Abstract

The dynamics of cancerous tissue growth involves the complex interaction of a number of phenomena interacting over a range of temporal and spatial scales. While several processes involved have been studied, the adaptation of the vasculature within a growing tumour has thus far received little attention. We consider a hybrid cellular automaton model which analyses the interaction between the tumour vascular network and tissue growth. We compute the temporal behaviour of the cancerous cell population under different hypotheses of structural adaptation in the vasculature. This may provide a possible method of determining experimentally which adaptation mechanisms are at work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Alarcón, H.M. Byrne, P.K. Maini. A cellular automaton model for tumour growth in a heterogeneous environment. J. theor. Biol. 225, 257–274 (2003).

    Article  Google Scholar 

  2. T. Alarcón, H.M. Byrne, P.K. Maini. A multiple scale model for tumour growth. SIAM Multiscale Model. Simul. 3, 440–475 (2005).

    Article  MATH  Google Scholar 

  3. T. Alarcón, H.M. Byrne, P.K. Maini. A design principle for vascular beds: The effects of complex blood rheology. Microvasc. Res. 69, 156–172 (2005).

    Article  Google Scholar 

  4. D.M. Collins, W.T. McCullough, M.L. Ellsworth. Conducted vascular responses: Communication across the capillary bed. Microvasc. Res. 56, 43–53 (1998).

    Article  Google Scholar 

  5. A. Deutsch, S. Dormann. Modeling of avascular tumor growth with a hybrid cellular automaton. In Silico Biol. 2, 1–14 (2002).

    Google Scholar 

  6. P.J. Hunter, P. Robbins, D. Noble. The IUPS human physiome project. Pflügers Archiv- Eur. J. Physiol. 445, 1–9 (2002).

    Article  Google Scholar 

  7. M. LaBarbera. Principles of design of fluid transport systems in zoology. Science. 249, 992–1000 (1990).

    Article  Google Scholar 

  8. C.D. Murray. The physiological principle of minimom work I The vascular system and the cost of blood volume. Proc. Nat. Acad. Sci. USA. 12, 207 (1977).

    Article  Google Scholar 

  9. A.A. Patel, E.T. Gawlinski, S.K. Lemieux, R.A. Gatenby. A cellular automaton model of early tumor growth and invasion: The effects of native tissue vascularity and increased anaerobic tumor metabolism. J. theor. Biol. 213, 315–331 (2001).

    Article  Google Scholar 

  10. A.R. Pries, T.W. Secomb, P. Gaehtgens. Design principles of vascular beds. Circ. Res. 77, 1017–1023 (1995).

    Google Scholar 

  11. A.R. Pries, T.W. Secomb, P. Gaehtgens. Structural adaptation and stability of microvascular networks: theory and simulations. Am. J. Physiol. 275, H349–H360 (1998).

    Google Scholar 

  12. A.R. Pries, B. Reglin, T.W. Secomb. Structural adaptation of microvascular networks: functional response to adaptive responses. Am. J. Physiol. 281, H1015–H1025 (2001).

    Google Scholar 

  13. N. Resnick, H. Yahav, A. Shay-Salit, M. Shushy, S. Schubert, L.C.M. Zilberman, E. Wofovitz. Fluid shear stress and the vascular endothelium: for better and for worse. Progress Biophys. Mol. Biol. 81, 177–199 (2003).

    Article  Google Scholar 

  14. G.D. Yancopoulos, S. Davis, N.W. Gale, J.S. Rudge, S.J. Wiegand, J. Holash. Vascular-specific growth factors and blood vessel formation. Nature. 407, 242–248 (2000).

    Article  Google Scholar 

  15. M. Zamir. Shear forces and blood vessel radii in vardiovascular-system. J. Gen. Physiol. 69, 449–461 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Maini, P.K., Alarcón, T., Byrne, H.M., Owen, M.R., Murphy, J. (2007). Structural Adaptation in Normal and Cancerous Vasculature. In: Aletti, G., Micheletti, A., Morale, D., Burger, M. (eds) Math Everywhere. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44446-6_14

Download citation

Publish with us

Policies and ethics