Skip to main content

Adaptively Refined Cartesian Grid Generation and Euler Flow Solutions for Arbitrary Geometries

  • Chapter
Numerical Flow Simulation I

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NNFM,volume 66))

Summary

An automatic Cartesian grid generator is presented together with Euler solutions of flows around complicated geometries. The computational grid is generated based on an octree-data structure. Solid bodies merely blank out areas of the background Cartesian grid. The part of the surface-intersecting cells is cut off, which lies inside the body. As a result arbitrarily shaped cut-cells arise around the geometry. The remaining cells inside the flow field benefit from their regular cubic shape. The strategy developed for the grid generation prevents numerical instabilities and treats geometric degeneracies in a generic way. Thus, cut-cells of too small size are merged into appropriate neighbour cells to ensure numerical stability of the flow solver. Two different flow solvers are applied for the Euler equations: the first solver represents a novel multi-grid upwind flow solver, which benefits directly from the octree-data structure. The second flow solver is a modified unstructured solver of Jameson type. The parameters of the adaptation criterion are calculated for every cell, thus cells are identified for adaptive refinement or coarsening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.H. Hirschel and W. Schwarz. “Mesh Generation for Aerospace CFD Applications”. In Surveys on Mathematics for Industry, Volume 4, 1995, pp. 249–265.

    MATH  Google Scholar 

  2. S.L. Jr. Karman. “Unstructured Cartesian/Prismatic Grid Generation for Complex Geometries”. In Surface Modeling, Grid Generation and Related Issues in Computational Fluid Dynamics (CFD) Solutions. NASA CP-3291, 1995, pp. 251270.

    Google Scholar 

  3. E.F. Charlton. “An Octree Solution to Conservation-Laws over Arbitrary Regions (OSCAR) with Application to Aircraft Aerodynamics”. PhD thesis, University of Michigan, 1997.

    Google Scholar 

  4. Z.J. Wang, G.S. Hufford, and A.J. Przekwas. “Adaptive Cartesian/Adaptive Prism (ACAP) Grid Generation for Complex Geometries”. AIAA-97–0860, 1997.

    Google Scholar 

  5. J.J. Quirk. “An Alternative to Unstructured Grids for Computing Gas Dynamic Flows around Arbitrarily Complex Two-Dimensional Bodies”. In NASA Contractor Report 189612. ICASE Report No. 92–7, 1992.

    Google Scholar 

  6. J.J. Quirk. “A Cartesian Grid Approach with Hierarchical Refinement for Compressible Flows”. In Computational Fluid Dynamics ‘84. John Wiley and Sons Ltd., 1994, pp. 200–209.

    Google Scholar 

  7. M.J. Aftosmis. “Solution Adaptive Cartesian Grid Methods for Aerodynamic Flows with Complex Geometries”. In Lecture Series 1997–02 ( Computational Fluid Dynamics ). Von Karman Institute for Fluid Dynamics, 1997.

    Google Scholar 

  8. J.E. Melton. “Automated Three-Dimensional Cartesian Grid Generation and Euler Flow Solutions for Arbitrary Geometries”. PhD thesis, University of California, 1996.

    Google Scholar 

  9. D.L. De Zeeuw. “A Quadtree-Based Adaptively-Refined Cartesian-Grid Algorithm for Solution of the Euler Equations”. PhD thesis, University of Michigan, 1993.

    Google Scholar 

  10. W.J. Coirier. “An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations”. PhD thesis, University of Michigan, 1994.

    Google Scholar 

  11. Z.J. Wang. “A fast nested Multi-Grid Viscous Flow Solver for Adaptive Cartesian/Quad Grids”. AIAA-96–2091, 1996.

    Google Scholar 

  12. E.H. Hirschel and F. Deister. “Extension of Quirk’s Approach to Three Dimensions”. Internal Report IB 97–4, Universität Stuttgart, I.A.G., 1997.

    Google Scholar 

  13. D. Rocher. “Technical Memorandum: Project Self-Organizing Cartesian Grid-Generation System”. Intermediate Progress Report, Université de Valenciennes, L.M.E., 1997.

    Google Scholar 

  14. H. Samet. “Hierarchical Data Structures and Algorithms for Computer Graphics–Partl: Fundamentals”. In IEEE Computer Graphics and Applications, Volume 8 (3), 1988, pp. 48–68.

    Article  MathSciNet  Google Scholar 

  15. H. Samet. “Hierarchical Data Structures and Algorithms for Computer Graphics–Part2: Applications”. In IEEE Computer Graphics and Applications, Volume 8 (4), 1988, pp. 59–75.

    Article  Google Scholar 

  16. K. Fujimura and T.L. Kunii. “A Hierarchical Space Indexing Method”. In T.L. Kunii, editor, Computer Graphics: Visual Technology and Art, Proceedings of Computer Graphics Tokyo ‘85 Conference. Springer Verlag, 1985, pp. 21–34.

    Google Scholar 

  17. H. Samet. “Neighbor Finding in Images Represented by Octrees”. In Computer Vision, Graphics and Image Processing 46, 1989, pp. 367–386.

    Article  Google Scholar 

  18. I.E. Sutherland and G.W. Hodgeman. “Reentrant Polygon Clipping”. In Communications of the ACM, Volume 17 (1), 1974, pp. 32–42.

    Article  MATH  Google Scholar 

  19. J.D Foley, A. van Dam, S.K. Feiner, and J.F Hughes. “Computer Graphics - Principles and Practice”. Addison Wesley, 2nd edition, 1996.

    Google Scholar 

  20. D.J. Mavriplis. “Unstructured Mesh Generation and Adaptivity”. In NASA Contractor Report 195069. ICASE Report No. 95–26, 1995.

    Google Scholar 

  21. C. Hirsch. “Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows”. John Wiley and Sons Ltd., 1990.

    Google Scholar 

  22. P.W. Hemker and B. Koren. “Standard Multigrid Techniques for CFD”. In Lecture Series 1997–02 ( Computational Fluid Dynamics ). Von Kármán Institute for Fluid Dynamics, 1997.

    Google Scholar 

  23. W.J. Coirier. “An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations”. NASA TM-106754, 1994.

    Google Scholar 

  24. F. Deister. “Analyse und Implementierung einer algebraisch orientierten Multigrid-Technik zur Konvergenzbeschleunigung eines unstrukturierten Eulerverfahrens”. Diplomarbeit, Technische Hochschule Darmstadt (Germany ), 1996.

    Google Scholar 

  25. D.L. De Zeeuw and K.G. Powell. “An Adaptively Refined Cartesian Mesh Solver for the Euler Equations”. Journal of Computational Physics, Volume 104, 1993, pp. 56–68.

    Article  MATH  Google Scholar 

  26. A. Eberle, M. Schmatz, and N. Bissinger. “Generalized Flux Vectors for Hypersonic Shock-Capturing”. AIAA-90–0390, 1990.

    Google Scholar 

  27. J.L. Steger and R.F. Warming. “Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite-Difference Methods”. Journal of Computational Physics, Volume 40, 1981, pp. 263–293.

    Article  MathSciNet  MATH  Google Scholar 

  28. D.J. Mavriplis. “Multigrid Solution Strategies for Adaptive Meshing Problems”. In NASA Contractor Report 195049. ICASE Report No. 95–14, 1995.

    Google Scholar 

  29. S.D. Connell and D.G. Holmes. “Three-Dimensional Unstructured Adaptive Multigrid Scheme for the Euler Equations”. AIAA Journal, Volume 32 (8), 1994, pp. 1626–1632.

    Article  MATH  Google Scholar 

  30. A. Jameson, T.J. Baker, and N.P. Weatherill. “Calculation of Inviscid Transonic Flow over a Complete Aircraft”. AIAA-86–0103, 1986.

    Google Scholar 

  31. A. Jameson and T.J. Baker. “Improvements to the Aircraft Euler Methods”. AIAA-87–0452, 1987.

    Google Scholar 

  32. J. Fischer. “Sensors for Self-Adapting Grid Generation in Viscous Flow Computations”. Volume 35, Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig/Wiesbaden, 1992, pp. 365–375.

    Google Scholar 

  33. R. Hentschel and E.H. Hirschel. “Self Adapted Flow Computations on Structured Grids”. In Computational Fluid Dynamics ‘84. John Wiley and Sons Ltd., 1994, pp. 242–249.

    Google Scholar 

  34. D.J. Jones. “Reference Test Cases and Contributors”, Chapter 5. AGARD-AR211, 1985.

    Google Scholar 

  35. V. Schmitt and F. Charpin. “Pressure Distributions on the ONERA-M6 Wing at Transonic Mach Numbers”, Appendix Bl. AGARD-AR-138, 1979.

    Google Scholar 

  36. F. Deister, D. Rocher, E.H. Hirschel, and F. Monnoyer. “Three-Dimensional Adaptively Refined Cartesian Grid Generation and Euler Flow Solutions for Arbitrary Geometries”. In Computational Fluid Dynamics ‘88. John Wiley and Sons Ltd., to appear in 1998.

    Google Scholar 

  37. J. Dompierre, M.-G. Vallet, Y. Fortin, M. Bourgault, and W.G. Habashi. “Anisotropic Mesh Adaptation: Towârds a Solver and User Independent CFD”. AIAA-97–0861, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Deister, F., Rocher, D., Hirschel, E.H., Monnoyer, F. (1998). Adaptively Refined Cartesian Grid Generation and Euler Flow Solutions for Arbitrary Geometries. In: Hirschel, E.H. (eds) Numerical Flow Simulation I. Notes on Numerical Fluid Mechanics (NNFM), vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44437-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44437-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53590-1

  • Online ISBN: 978-3-540-44437-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics