Skip to main content

Simulation of Spatially Developing Plane and Round Jets

  • Chapter
  • 303 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NNFM,volume 66))

Summary

Large-Eddy Simulations of jets and wall-bounded flows obtained from different numerical techniques are presented. In the jet case, it is found that a sensitive parameter is the nature of the upstream perturbations, stochastic forcing yield an unphysical drop in turbulence intensity near the inflow boundary, whatever the method, resolution and subgrid-scale model used. With deterministic perturbations smooth statistics are obtained. A second investigation is concerned with the performance of two different solution schemes (a second-order scheme of AUSM type and a compact finite difference scheme), which are applied to a plane turbulent plane jet. Both methods produce similar results, disregarding whether a subgrid scale model is used or not. Finally, the recycling technique proposed by Lund, Wu and Squires (CTR Annual Research Briefs, 1996, pp. 287-295) for turbulent boundary layers at zero-pressure gradient has been proved to resist the pressure fluctuations caused by D-type roughness element, which is very promising for forthcoming simulations of wakes behind bluff bodies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. AKSELVOLL and R MOIN. Large eddy simulation of turbulent confined coannular jets and turbulent flow over a backward facing step. Technical Report 63, Stanford University, 1995.

    Google Scholar 

  2. M. H. Carpenter, D. Gottlieb, and S. Abarbanel. The stability of numerical boundary treatments for compact high-order finite-difference schemes. J. Comput. Phys ., 108: 272–295, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. DJÉRIDANE. Contribution à l’étude expérimentale de jets turbulents axisymétriques à densité variable. PhD thesis, Université d’Aix-Marseille I I, 1994.

    Google Scholar 

  4. F DUCROS, R COMTE, and M. LESIEUR. Large eddy simulation of transition to turbulence in a boundary layer developing over a flat plate. J. Fluid Mech ., 326: 1–36, 1996.

    Article  MATH  Google Scholar 

  5. F. Durst, J. Jovanovió, and J. Sender. LDA measurements in the near-wall region of a turbulent pipe flow. J. Fluid Mech ., 295: 305–335, 1995.

    Article  Google Scholar 

  6. H. Eckelmann. The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J. Fluid Mech ., 65: 439–460, Sept. 1974.

    Article  Google Scholar 

  7. T. M. Eidson. Numerical simulation of the turbulent Rayleigh-Benard problem using sub-grid modelling. J. Fluid Mech ., 158: 245–268, June 1985.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Erlebacher, M. Hussaini, C. Speziale, and T. Zang. Toward the Large-Eddy Simulation of compressible turbulent flows. J. Fluid Mech., 238: 155–185, 1992.

    Article  MATH  Google Scholar 

  9. M. Germano, U. Piomelli, R Moin, and W. Cabot. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3 (7): 1760–1765, July 1991.

    Article  MATH  Google Scholar 

  10. S. Ghosal and P. Moin. The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys., 118: 24–37, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Jameson. Solution of the Euler equations for two-dimensional transonic flow by a multi-grid method. Applied Math. and Comp., 13: 327–355, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Kim, R Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech., 177: 133–166, 1987.

    Article  MATH  Google Scholar 

  13. J. KIM, R. MOIN, and R. MOSER. Turbulent statistics in fully developed channel flow at low reynolds number. J. Fluid Mech., 177: 133–166, 1987.

    Article  MATH  Google Scholar 

  14. H. LE and P. MOIN. Direct simulation of turbulent flow over a backward-facing step. Technical Report 58, NASA, 1994.

    Google Scholar 

  15. S. K. Lele. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103: 16–42, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. LESIEUR and O. MÉTAIS. New trends in large eddy simulations of turbulence. Ann. Rev. Fluid Mech., 28: 45–82, 1996.

    Article  Google Scholar 

  17. J. L. LUMLEY and G. R. NEWMAN. The return to isotropy of homogeneous turbulence. J. Fluid Mech., 82: 161–178, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Lund. Large-eddy simulation of a boundary layer with concave stream-wise curvature. In Ann. Res. Briefs, pages 185–196. Center Turb. Res., 1994.

    Google Scholar 

  19. T. S. LUND, X. WU, and K. D. SQUIRES. On the Generation of Turbulent Inflow Conditions for Boundary Layer Simulations, pages 287–295. Center For Turbulence Research, 1996.

    Google Scholar 

  20. M. Meinke, C. Schulz, and T. Rister. LES of Spatially Developing Jets. In R. Friedrich and P. Bontoux, editors, Computation and visualization of three-dimensional vortical and turbulent flows. Proceedings of the Fifth CNRS/DFG Nbrkshop on Numerical Flow Simulation, volume NNFM 64. Vieweg Verlag, 1998.

    Google Scholar 

  21. A. MICHALKE and G. HERMANN. On the inviscid instability of the circular jet with external flow. J. Fluid Mech, 114: 343–359, 1982.

    Article  MATH  Google Scholar 

  22. P. Moin and J. Kim. Numerical investigation of turbulent channel flow. J. Fluid Mech., 118: 341–377, 1982.

    Article  MATH  Google Scholar 

  23. E. D. P. COMTE and M. LESIEUR. Un formalisme pour la simulation des grandes échelles d’écoulements compressibles. preprint LEG, for submission to C.R. Acad. Sci. Paris,1998.

    Google Scholar 

  24. J. S. P. COMTE and R BÉGOU. Streamwise vortices in large-eddy simulations of mixing layers. Eur. J. Mech. (to appear), 1998.

    Google Scholar 

  25. B. R. PEARSON, R. ELAVARASAN, and R. A. ANTONIA. The response of a turbulent boundary layer to a square groove. J. Fluids Eng.,1996. To be published.

    Google Scholar 

  26. U. Piomelli. High Reynolds number calculations using the dynamic sgs model. Phys. Fluids, A 5 (6): 1484–1490, June 1993.

    Article  Google Scholar 

  27. U. Piomelli, R Moin, and J. Ferziger. Model consistency in LES of turbulent channel flows. Phys. Fluids, 31 (7): 1884–1886, July 1988.

    Article  Google Scholar 

  28. T. Poinsot and S. Lele. Boundary Conditions for Direct Simulations of Compressible Viscous Flows. J. Comput. Phys., 101: 104–129, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Rister. Grobstruktursimulation schwach kompressibler turbulenter Freistrahlen - ein Vergleich zweier Lösungsansätze. Dissertation, Aerodyn. Inst. RWTH-Aachen, 1998.

    Google Scholar 

  30. S. Russ and P. Stykowski. Turbulent structure and entrainment in heated jets: The effect of initial conditions. Phys. Fluids, A 5 (12): 3216–3225, Dec. 1993.

    Article  Google Scholar 

  31. C. Schulz. Grobstruktursimulation turbulenter Freistrahlen. Dissertation, Aerodyn. Inst. RWTH-Aachen, 1997.

    Google Scholar 

  32. R. R. Spalart. Direct simulation of a turbulent boundary layer up to Re = 1410. J. Fluid Mech., 187: 61–98, 1988.

    Article  MATH  Google Scholar 

  33. K. Thompson. Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys., 68 (1): 1–24, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  34. F. Unger. Numerische Simulation turbulenter Rohrströmungen. Dissertation, Technische Universität München, Lehrstuhl für Fluidmechanik, Feb. 1994.

    Google Scholar 

  35. T. Wei and W. Willmarth. Reynolds-number effects on the structure of a turbulent channel flow. J. Fluid Mech., 204: 57–95, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Comte, P., Dubief, Y., Brun, C., Meinke, M., Schulz, C., Rister, T. (1998). Simulation of Spatially Developing Plane and Round Jets. In: Hirschel, E.H. (eds) Numerical Flow Simulation I. Notes on Numerical Fluid Mechanics (NNFM), vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44437-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44437-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53590-1

  • Online ISBN: 978-3-540-44437-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics