Skip to main content

Numerical simulation of turbulent high speed flows

  • Chapter
Numerical Flow Simulation I

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NNFM,volume 66))

  • 301 Accesses

Summary

The solution of the compressible Navier-Stokes equations have been extended to different problems of turbulent flows. A first part describes the application of a Probabilistic Eulerian-Lagrangian Model (PEuL) to the non-premixed gaseous hydrogen/oxygen flame in a supersonic flow. A second part is devoted to the subsonic mixing and atomization of a liquid oxygen stream into a hydrogen one. The common part of these works is the development of physical models for complex flows with applications to high speed propulsion devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Borghi. Turbulent combustion modelling. Progress in Energy and Combustion Science, 14: 245–292, 1988.

    Article  Google Scholar 

  2. B.E. Launder. Mathematical Models of Turbulence. Academic Press, 1972.

    Google Scholar 

  3. Sarkar, S., Erlebacher, G., Hussaini, M. Y., Kreiss, H. O. The analysis and modeling of dilatation terms in compressible turbulence. ICASE Report No. 89–79, December 1989.

    Google Scholar 

  4. L. Vervisch. Prise en compte d’effets de cinétique chimique dans les flammes de diffusion turbulentes par l’approche fonction densité de probabilité. PhD thesis, Universite de Rouen, 1991.

    Google Scholar 

  5. S. Melen. Modelisation et etude numerique de la combustion supersonique turbulente non-premelangee, approche probaliste. PhD thesis, Universite de Rouen, 1995.

    Google Scholar 

  6. S.B. Pope. The relationship between the probabiltity approach and particle models for reaction in homogenes turbulence. Combustion and Flames, 35: 41–45, 1979.

    Article  Google Scholar 

  7. D.J. Mavriples. Accurate multigrid solution of the euler equations on unstructured and adaptive meshes. AIAA-Journal, 28, 1990.

    Google Scholar 

  8. W. Rick. Adaptive Galerkin Finite Elemente Verfahren zur numerischen Strömungssimlation auf unstrukturierten Netzen. PhD thesis, Institut fur Strahlantriebe, RWTH Aachen, 1994.

    Google Scholar 

  9. Bikker, S., Greza, H., Koschel, W. Parallel computing and multigrid solution on adaptive unstructured meshes. Notes on Numerical Fluid Mechanics, 47: 9–16, 1994.

    Google Scholar 

  10. Spencer, B.W., Jones, B.G. Statistical investigation of pressure and velocity fields in the turbulent two-stream mixing layer. AIAA-71–613, 1971.

    Google Scholar 

  11. D. Papamoschou and Roschko A. The compressible turbulent shear layer: an experimental study. Journal of Fluid Mechanics, 197: 453–477, 1988.

    Article  Google Scholar 

  12. Elliott, G.S., Samimiy, M. and Annette, S.A. Study of compressible mixing layers using filtered rayleigh scattering based visualizations. AIAA-Journal, 30: 2567 2569, 1992.

    Google Scholar 

  13. J.-R. Nuding. Interaction of compressible shear layers with shock waves: an experimental study, part i. AIAA-96–4515, 1996.

    Google Scholar 

  14. A. Stoukov. Simulation numérique de l’auto-allumage et de la combustion dans une couche de mélange réactive supersonique. PhD thesis, Université de Rouen, 1996.

    Google Scholar 

  15. S. Zaleski. Simulation par capture d’interface de la formation d’intrusions liquides dans les jets cisaillés. Rapport au PRO CNRS/SEP/CNES., 1992.

    Google Scholar 

  16. F.X. Keller, A. Vallet, D. Vandromme, and S. Zaleski. Etude numérique de la pulvérisation des jets liquide—gaz. Rapport au PRC CNRS/SEP/CNES, 1992.

    Google Scholar 

  17. F.X. Keller, J. Li, A. Vallet, D. Vandromme, and S. Zaleski. Direct numerical simulation of interface breakup and atomisation. ICLASS 94, 1994.

    Google Scholar 

  18. B. Lafaurie, R. Nardone, S. Scardovelli, S. Zaleski, and G. Zanetti. Modelling merging and fragmentation in multiphase flows with surfer. Journal of Computational Physics, 113: 134–147, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  19. Modélisation eulerienne et lagrangienne de la dispersion particulaire en écoulement turbulent. PhD thesis, Université de Rouen, 1987.

    Google Scholar 

  20. W.A. Sirignano. Fluids dynamics of sprays–1992, freeman scholar lecture. Journal of Fluids Engineering, 115: 345–377, 1993.

    Article  Google Scholar 

  21. R. Borghi. Droplets and spray combustion. Modelling of Combustion and Turbulence, CNRS-CSAMI-CRIHAN, Aussois., 1993.

    Google Scholar 

  22. H.C. Yee. A class of high-resolution explicit and implicit shock-capturing methods. Computational Fluid Dynamics, March 1989, Rhode-St-Genèse, Belgium, Von Karman Institute for fluid dynamics, Lecture Series 1989–04, 1989.

    Google Scholar 

  23. E. Kessy, A. Stoukov, and D. Vandromme. Numerical simulation of reacting mixing layer with a parallel implementation. In Parallel Computing Technologies. Verlag, 1995.

    Google Scholar 

  24. H.W. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in FORTRAN. Cambridge University Press, 1992.

    Google Scholar 

  25. E. Villermaux. Mixing and spray formation in coaxial jets. Presented at the 3rd International Symposium on Space Propulsion, Beijing, China, August 11–13, 1997.

    Google Scholar 

  26. L. Vervisch, E. Bidaux, K.N.C. Bray, and W. Kollman. Surface density function in premixed turbulent combustion modelling, simularities between probability density function and flame surface approaches. Phys. Fluids, 7 (10): 2496–2503, October 1995.

    Article  MATH  Google Scholar 

  27. R. Borghi. Commentaires au sujet de la pulvérisation de jets. Note GDR, septembre 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Wepler, U. et al. (1998). Numerical simulation of turbulent high speed flows. In: Hirschel, E.H. (eds) Numerical Flow Simulation I. Notes on Numerical Fluid Mechanics (NNFM), vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44437-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44437-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53590-1

  • Online ISBN: 978-3-540-44437-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics